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Abstract

This concise overview introduces Bayesian Neural Networks (BNNs) as a promising alternative to standard neural networks
(SNNs), which often suffer from a lack of interpretability, earning them the label of ”black box” models. This lack of transparency
to a neural network’s ability to explain its predictions is especially critical in the sciences and medicine where point estimates
are not sufficient and uncertainty estimates are often required. Furthermore, it is argued that incorporating Bayesian concepts
into machine learning can also improve the overall accuracy of models. After an introduction and comparison between BNNs
and SNNs, in line with the paper from Wilson et. al. [1], we introduce the current understanding of a model’s ability to
generalize and current shortcomings, such as double descent that plagues standard neural networks, and how certain BNN
frameworks prove to be a promising candidate in alleviating some of those pitfalls. However, BNNs still suffer from practical
implementations due to their inferior scalability to larger datasets and models. Some of the most common approximations to
the optimization of training and estimation of Bayesian statistical quantities are then introduced.
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1 Bayesian Neural Networks

Modern deep-learning methods are incredibly powerful tools
that can tackle a wide range of challenging problems. How-
ever, due to their nature as black boxes, quantifying the un-
certainty associated with their predictions can be difficult [2].
Bayesian statistics provide a formal framework to comprehend
and measure the uncertainty inherent in deep neural network
predictions.

Bayesian Neural Networks incorporate the principles of
Bayesian Inference, which can be particularly useful when
dealing with limited data or when making predictions in uncer-
tain environments. BNNs extend traditional neural networks
by introducing probabilistic weights and biases.

BNNs train the model weights as probability distributions
rather than searching for a singular optimal value as with
SNN. This makes them more robust and allows them to gener-
alize better with less overfitting. The process of finding these
distributions associated with the weights is called marginal-
ization.

One standard approach to finding point estimates of weights
in standard neural networks would be Maximum Likelihood
Estimators (MLE) while for BNN, the estimate would be
rather Maximum A Posteriori (MAP) or predictive distribu-
tion. While SNNs would use differentiation to find the optimal
value through gradient descent, BNNs rely on Markov Chain

Monte Carlo (MCMC), Variational Inference, and Normaliz-
ing Flows [3], given the presence of hard-to-compute integrals
which has the unfortunate consequence of increased computa-
tional complexity.

2 Advantages of BNNs

2.1 Sources of uncertainty

Usually, in SNN applications, our data D is merely a sample of
the process we are modeling. In these cases, we are looking for
models that generalize to unseen data. Therefore, it is useful
to express the uncertainty about our model due to the lack of
data. This uncertainty is commonly referred to as epistemic
uncertainty or parameter uncertainty.

BNNs address epistemic uncertainty, as explained above, by
treating the model’s weights as probabilistic variables rather
than fixed parameters. This allows the model to capture the
uncertainty in its own parameters and produce probabilistic
predictions, indicating the model’s confidence in its predic-
tions.

Usually, there is another source of uncertainty called
aleatoric uncertainty, which originates directly from the pro-
cess that we are modeling. This uncertainty, also known as
data uncertainty, arises from the inherent variability in the
data itself and is the noise in the labels that cannot be ex-
plained by the inputs. Often, this uncertainty is called “irre-
ducible noise”. Bayesian Neural Networks play a crucial role
in quantifying and managing also aleatoric uncertainty by in-
corporating uncertainty estimates in the output of the model.

2.2 Bayesian Inference

In Bayesian Inference, given for example some known input-
output pairs in a supervised learning setting, we seek to com-
pute the posterior p(θ|D), which is the conditional distribution
of the parameters of a model given the training data D. The
posterior can be determined using Bayes’ theorem:

p(θ|D) =
p(θ)p(D|θ)

p(D)
∝ p(θ)p(D|θ) (1)

where p(D|θ) represents the likelihood and p(θ) the prior. Our
interest in the posterior p(θ|D) lies in the fact that we want to
compute the posterior predictive distribution to model unseen
data

p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ = Ep(θ|D) [p(y|x,D)] . (2)

Equation (2) represents a Bayesian Model Average (BMA) as
it averages the predictions of all plausible models weighted by
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their posterior. This yields a nice interpretation of the pre-
dictive distribution as an infinite ensemble of networks, hence
ensemble learning, which can represent many hypothesis mod-
els we believe to be possible. This is in net contrast to MLE
methods in SNN where only one set of parameters θ∗, there-
fore one hypothesized model, is used for predictions.

SNN BNN
θ∗ ⇒ p(θ|D)

yθ∗(x) ⇒ p(yθ|x,D)

An immediate benefit of specifying distributions over the
model parameters and predictions is that we can quantify our
uncertainty about these things, e.g., by computing their vari-
ance. This is especially relevant when learning from small
datasets; standard neural net training will overfit for the rea-
sons discussed above, but Bayesian Inference will find the best
explanation for the model parameters given the available data,
which typically have high uncertainty when data is scarce. In
the limit of dataset size far exceeding the number of neurons,
the inferred distributions sharpen and begin to resemble the
solutions from the standard training; for modern networks we
don’t typically reach this limit in practice, so having a notion
of model uncertainty is helpful.

The classical training of an SNN can be viewed as a limit
of the Bayesian Inference in the case when p(θ|D) ≈ δ(θ =
θ∗), where the delta function is zero everywhere except at
θ∗ = argmaxθp(θ|D). The difference between a classical and
Bayesian approach will depend on how sharp the posterior
becomes. If the posterior is sharply peaked and the predictive
distribution does not vary much where the posterior has mass,
then there may be no difference between the two approaches.
However in modern SNN problems the likelihood p(D|θ) has
wide support, not favoring a specific set of parameters. In
such scenarios, it is advantageous to employ BNNs.

In Bayesian Machine learning, the prior p(θ) is often im-
posed. Common choices include a pre-determined class, such
as Gaussian priors p(θ = N (α, β) or a more systematic ap-
proach trying to estimate the parameters of the prior from
the data with the help of empirical Bayes approach.

Two computationally difficult integrals arise during the
Bayesian setup which limits its use in practical applications.
The first one arises from the computation of the marginal like-
lihood p(D) =

∫
p(D|θ)p(θ)dθ, while the second corresponds

to the posterior predictive distribution (2). It is possible to
estimate these two integrals via various algorithms which can
be categorized as either sampling-based or variational.

Sampling algorithms are mostly based on Markov Chain
Monte Carlo (MCMC) methods, the most relevant in BNN
is the Metropolis-Hastings algorithm. For example, we can
compute p(y|x,D) by sampling a finite set of parameters
{θ1, θ2, ..., θN}, whose distribution matches p(θ|D) in the limit
for large N to compute the predictive distribution. When the
size of the model grows, however, sampling algorithms become
less efficient, and variational algorithms are preferred when
computing intractable distributions like the posterior.

Variational methods directly model the posterior using a
parametrized distribution qϕ(θ), then iteratively improve the
approximation via an optimization problem. The measure of
closeness that is commonly used is the Kullback-Leibler diver-
gence shown in equation (24)[4]. The process of learning the
parameters of the distribution closely resembles SNN training
and is called stochastic variational inference.

2.3 Generalization

Typically, in traditional machine learning, a model’s ability to
generalize effectively (low generalization error) is linked to a
small difference between training and test errors. However, a
seminal paper by Zhang. et. al. [5] revealed that even large

neural networks with very small training and test errors can fit
random labels in the training data, highlighting a lack of un-
derstanding in quantifying a model’s generalization capacity.
Moreover, in the following section, we will discuss a peculiar
phenomenon known as Double Descent[6], which further ac-
centuates this observation.

In the paper by Wilson et. al. ([1]) it is argued that the ran-
dom labeling is not surprising if analyzed through a Bayesian
framework with the help of the concepts of support and induc-
tive bias. Inductive bias refers to the inherent assumptions or
preferences a machine learning model acquires from its train-
ing data, guiding it to favor particular solutions over others
and enabling it to generalize well to new data. This bias plays
a crucial role in helping the model make sensible decisions
even in the presence of noisy or limited training data. To
achieve good inductive bias, various techniques are commonly
employed, including regularization, dropout, early stopping,
and data augmentation, among others. Additionally, the se-
lection of an appropriate model architecture that strikes a bal-
ance between complexity and representational capacity is of
utmost importance.

Models with fewer parameters tend to possess a stronger
inductive bias, primarily because they are constrained to fit
a specific class of data. However, this limitation may also re-
sult in insufficient generalization to other types of data, as
the model’s support might not be extensive enough. In this
context, support refers to the range of dataset classes that a
model can effectively accommodate, corresponding to situa-
tions where the likelihood p(D|M) > 0.

Thus from a statistical perspective, we want a large support
and specific inductive bias of a model to generalize well, as will
become evident in the next subsection.

Figure 1: The vertical axis represents the marginal likelihood
or Bayesian evidence and represents how good a mode is at
fitting a specific dataset. Figure taken from reference [1]

Figure 2: Prior hypothesis space and posterior for (b) CNN
(c) linear model (d) MLP.
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2.3.1 Generalization for BNNs

To exemplify the delicate balance between a wide support and
a strong inductive bias, consider the illustration presented in
Figure (1) from Wilson et. al. [1]. The blue linear model
displays truncated support, as it lacks the flexibility to capture
quadratic behaviors in the data. Consequently, the marginal
likelihood’s probability mass is sharply concentrated around
datasets with linear behaviors.

In contrast, a traditional MLP (multi-layer perceptron) ex-
hibits a support that is distributed too evenly across all classes
of datasets. As a result, the model lacks the necessary induc-
tive bias to effectively capture and generalize well on specific
image datasets.

The ideal model, illustrated here as a CNN (convolutional
neural network), strikes a balance between casting a wide sup-
port and maintaining a strong inductive bias to learn well
on image data. It successfully learns the distinctive features
of the dataset, enabling improved generalization on diverse
classes of data (different image sets).

In the context of a Bayesian framework, our objective is for
the posterior p(D|M) to converge towards the correct solution
while adhering to the appropriate inductive bias. For this pur-
pose, the prior hypothesis space, also known as support, must
be sufficiently large to encompass the true model, as depicted
in Figure (2). If the inductive bias aligns with the true model,
and the true model lies within the prior hypothesis space (sce-
nario (b) in the Figure, akin to the CNN case in Figure (2)),
the model will contract around the accurate solution.

However, if the prior hypothesis space is too restricted, lim-
iting the model’s flexibility, it may not include the correct
solution, even if the inductive bias is accurate. Consequently,
the posterior will contract towards an incorrect solution, as
illustrated by the example of the linear function.

Furthermore, when the support is excessively broad, and the
model lacks the appropriate inductive bias, the model will not
effectively contract (depicted in Figure (d), representing the
MLP example). In such cases, the model’s ability to converge
to the correct solution is impaired.

In practical terms, our choice of a model involves finding
a balance between flexibility and support. We aim to select
a highly flexible model that can cover a wide range of possi-
bilities (large support). However, to ensure sensible inductive
biases, we need to complement this flexibility with a suitable
choice of prior p(θ) on the coefficients that govern the distri-
bution over functions1 p(f(x)).

2.4 Double Descent

Traditional neural networks suffer from what is referred to
as double descent, as depicted in Figure (3). In the classi-
cal regime, governed by the Bias-Variance Tradeoff, as model
complexity increases, the expected test error initially de-
creases, reaches a minimum, and then starts increasing due
to overfitting. However, double descent challenges this con-
ventional understanding and introduces a new perspective. It
reveals that, with sufficiently large datasets, there exists a sec-
ond descent in the error curve, referred to as the modern inter-
polating regime, occurring after the initial peak of overfitting.
This unexpected behavior suggests that complex models can
still generalize well and achieve lower test errors, even after
the conventional overfitting point.

By employing Bayesian model averaging, models with suit-
able posterior approximation and sensible priors, it was

1To better understand this concept, consider again the simple linear
model where we have f(x) = θ0 + θ1x. The parameters θ0 and θ1 are
generated according to our prior p(θ) with θ = (θ0, θ1). Sampling from
this prior thus gives us a distribution over linear functions with different
slopes and intercepts.

Figure 3: Figure taken from [6]. It shows the general be-
haviour of the test and train error as a function of the model
flexibility (encapsulated in the width of the ResNet-18 archi-
tecture here) where double descent appears.

demonstrated in [1] that the unexpected double descent be-
havior observed in traditional approaches does not manifest
in Bayesian deep learning models. Instead, we observe the
traditionally expected monotonic behavior of improved accu-
racy with increasing model flexibility. This will be further
elaborated in section (4.6).

3 General optimization procedure

In a standard machine learning optimization pro-
cess for a supervised problem, given a dataset
D =

{(
xn ∈ RN ,yn ∈ RM

)}
, where yn ∈ RM for re-

gression and yn ∈ 0, 1M for binary classification, we typically
perform Maximum Likelihood Estimation. The objective is
to find the optimal parameters θ ∈ RP , which correspond to
the weights and biases in a typical multi-layer perceptron for
example. This optimization process is formulated as follows:

θ̂MLE = argmax
θ∈Θ

p(D|θ) (3)

The optimization strategy is frequently reformulated as a
minimization problem[7]. To further mitigate overfitting, a
penalty term C(θ) (regularizer) is commonly incorporated.
This modified minimization strategy is known as empirical
risk minimization and can be expressed as follows:

θ̂ = argmin
θ∈Θ

[− log p(D|θ) + λC(θ)] (4)

where λ ≥ 0 serves as a tunable regularization parameter.

In the frequentist framework, we consider θ as a fixed but
unknown parameter that solely depends on the data. In con-
trast, the Bayesian framework treats all unknowns as random
variables. Consequently, we hold prior beliefs about the distri-
bution p(θ), and upon observing the data, we update these be-
liefs using the posterior distribution p(θ|x). The Maximum A
Posterior (MAP) framework aligns more closely with Bayesian
principles, as it aims to maximize the posterior expression (1)

θ̂MAP = argmax
θ∈Θ

p(θ|D) ∝ argmax
θ∈Θ

p(θ)p(D|θ). (5)

If we consider i.i.d samples the likelihood factorizes into con-
ditional probabilities

p(D|θ) =
N∏

n=1

p (yn|f(xn,θ)) (6)

where we introduce the feature function f(θ,x) with θ ∈ RP ,
which predicts the outputs of the output distribution (e.g., a
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Gaussian). Reformulating as a minimization problem using
log-loss, we obtain the following optimization strategy:

θ̂MAP = argmin
θ∈Θ

(
− log p(θ) +

N∑
i=1

ℓn(xn,yn,θ)

)
= argmin

θ∈Θ
L(xn,yn,θ)

(7)

where we define the empirical loss ℓn and log joint distribution:
L as follows:

ℓn(xn,yn,θ) = − log p (yn|f(xn,θ))

L(xn,yn,θ) = −

[
N∑

n=1

log p (yn|f (xn,θ)) + log p(θ)

]
(8)

It is worth noting that the regularized MLE estimate can be
obtained by considering the regularized empirical risk prob-
lem and assuming that the complexity parameter C(θ) =
− log p(θ) and λ = 1.

4 Posterior Approximations

4.1 Maximum A Posterior estimation

The simplest approximate inference method involves comput-
ing the Maximum A Posterior (MAP) estimate:

θ̂ = argmax p(θ|D) = argmax log p(θ) + log p(D|θ). (9)

Here, we assume that the posterior concentrates all its prob-
ability mass on a single value:

p(θ|D) ≈ δ(θ − θ̂), (10)

which corresponds to a typical machine learning approach
where a single set of optimal parameters is chosen. However,
such a procedure has several drawbacks, including a lack of
uncertainty quantification for the parameters and limited uti-
lization of Bayesian methods. In a Bayesian framework, we
have the opportunity to use other model selection processes
that have been shown to improve accuracy.

To capture the uncertainty effectively, we can employ vari-
ous inference algorithms, including but not limited to the Grid
approximation, variational inference, Markov Chain Monte
Carlo (MCMC), and the Laplace approximation. These meth-
ods allow for a better characterization of parameter uncer-
tainty and enable the full potential of Bayesian approaches.

4.2 Laplace Approximation

To provide further insight, we reframe the posterior expression
(1) as follows:

p(θ|D) =
p(θ)p(D|θ)

p(D)
=

p(D,θ)

p(D)
, (11)

where, in the second step, we use the property that the con-
ditional probability can be expressed as the quotient of the
joint probability with respect to the marginal. Within the
Laplace Approximation[8], we assume that we can represent
this posterior as a multivariate Gaussian:

p(θ|D) =
1

Z
e−E(θ) with E(θ) = − log p(θ,D), (12)

where E(θ) (corresponding to the loss function in the MAP
estimate) is referred to as the energy function. The normal-
ization constant, Z = p(D) =

∫
p(D|θ)p(θ)dθ, serves as an

analogy to the canonical ensemble in statistical physics.
By performing a Taylor expansion of the posterior approxi-

mation around the lowest energy state θ̂ (obtained, for exam-
ple, using any standard machine learning optimization with
regularized empirical risk minimization or the simple MAP

approach explained above), we arrive at the following expres-
sion:

E(θ) ≃ E(θ̂MAP) + (θ − θ̂MAP)
T∇θE(θ)

+
1

2
(θ − θ̂MAP)

T (∇2
θE(θ) |θ̂MAP

)(θ − θ̂MAP)
(13)

The first term vanishes at the mode θ̂MAP since the gradient
is zero. Consequently, we obtain the joint probability distri-
bution:

p̂(D,θ) ≃ e−E(θ̂)

× exp

[
−1

2
(θ − θ̂MAP)

T (∇2
θE(θ) |θ̂MAP

)(θ − θ̂MAP)

]
(14)

which, by comparing (11) and (12), yields the following pos-
terior approximation:

p(θ|D) =
1

Z
p̂(θ,D) ≃ N (θ | θ̂MAP,Σ), (15)

where

Σ =
(
∇2

θE(θ) |θ̂MAP

)−1

, (16)

and Σ is the inverse of the Hessian.

The normalizing constant Z corresponding to the marginal
likelihood or evidence can be determined by the general for-
mulation of a multivariate Gaussian and is given by

Z ≃ e−E(θ(2π)D/2(detΣ)1/2 (17)

To explicitly compute the Hessian, we need to evaluate it for
the joint log expression L from equation (8). For now, we will
neglect the prior term p(θ) and focus on the log-likelihood
term for each data point. The first and second derivatives are
as follows:

∇θ log p(y | f(x,θ)) = Jθ(x)
⊤r(y;f)

∇2
θ log p(y | f(x,θ)) = Hθ(x)

⊤r(y;f)

− Jθ(x)
⊤Λ(y;f)Jθ(θ)

(18)

where Jθ(x)ci = ∂fc(θ,x)/∂θi ∈ RM×P is the Jacobian (re-
call M is the dimension of the output and P the dimension

of the parameters θ), [Hθ(x)]cij = ∂2fc(x,θ)
∂θi∂θj

∈ RC×M×M

the Hermitian, r(y;f) = ∇f log p(y|f) the residual and
Λ(y;f) = −∇2

ff log p(y|f) the per noise-input term.

In general, when considering the prior, we have the flexi-
bility to choose any twice-differentiable log-density prior p(θ).
However, even for a simple case like the weight-decay regular-
izer C(θ) = 1

2
γ−2|θ|2, where we assume a zero-mean Gaussian

prior N (θ|0, γ2I), scalability issues arise. For a supervised
learning setting, the Hessian at the MAP estimate is given
by:

∇2
θE(θ) |θ̂MAP

= −γ−2I −
N∑

n=1

∇2
θ log p(yn|f(xn,θ)) |θ̂MAP

(19)
The second term in this equation scales quadratically with
the number of network parameters, making it computation-
ally infeasible for large networks with millions of parameters.
Additionally, for most neural networks, the log-likelihood is
not convex, leading to a non-positive definite Hessian. Conse-
quently, we encounter two significant challenges: 1) the opti-
mization problem is non-convex, making it difficult to find a
suitable global minimum, and 2) the optimization procedure
becomes more unstable in general.
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4.2.1 Gauss-Newton approximation

One way to address the scalability issues is to perform a Gauss-
Newton approximation to the Hessian. This involves neglect-
ing the Hermitian term in (18), effectively linearizing the equa-
tion:

∇2
θ log p(y | f(x,θ)) ≃ Jθ(x)

⊤Λ(y;f)Jθ(x), (20)

where Jθ(x) is the Jacobian matrix and Λ(y;f) is a di-
agonal matrix containing the second derivatives of the log-
likelihood with respect to the output predictions. This ap-
proximation also ensures that the optimization remains posi-
tive semi-definite. Additionally, computing Jacobians involves
only first-order derivatives, which are efficiently implemented
in many modern machine learning tools.

For the common choice of a Gaussian prior p(θ) =
N (θ|µ,β), the Laplace approximation simplifies to:

p(θ|D) ≈ N (θ,ΣGGN), (21)

where

Σ−1
GGN =

N∑
n=1

Jθ (xn)
⊤ Λ (yn,fn)Jθ (xn) + β

−1. (22)

However, inverting this matrix still takes O(P 3).Therefore,
additional approximation schemes are necessary for such cases.
One simple approach is diagonal factorization, which ignores
off-diagonal terms in the matrix.

In summary, the Laplace approximation is favored for its
simplicity as an inference approximation scheme. Apart from
computing the MAP estimate, which can be accomplished us-
ing traditional optimization algorithms, the main computa-
tional requirement is to calculate the inverse of the Hessian
matrix at θMAP. This straightforward implementation makes
it suitable for obtaining statistical measures of pre-trained
models and has been conveniently implemented in torch by
Immer et. al. [9] in the Laplace Redux library. Moreover, the
Laplace approximation provides a reasonable approximation
for models with moderate parameter dimensions.

However, challenges arise when applying the Laplace ap-
proximation to deep machine learning models with an exten-
sive number of parameters. In such cases, the computation of
the inverted Hessian becomes computationally expensive due
to the high dimensionality of the problem. Consequently, for
very large neural networks, the Laplace approximation may
become impractical, and alternative methods such as Monte
Carlo sampling techniques like Markov Chain Monte Carlo or
variational inference might be preferred to handle the com-
plexity of parameter uncertainty estimation.

4.3 Variational Inference

Methods like Monte Carlo Markov Chain algorithms have
proven to be effective for sampling from exact posteriors. How-
ever, they also encounter scalability issues, primarily because
it may require a large number of iterations until the algorithm
converges to the stationary distribution (i.e., the desired pos-
terior). This slow convergence can make MCMC computa-
tionally expensive and impractical for large-scale problems.

Alternatively, a popular method is Variational Inference,
also known as variational Bayes. In this approach, we propose
an approximate distribution (referred to as the variational dis-
tribution) that belongs to a tractable family of distributions Q
parameterized by a set of parameters ϕ. The goal is to find the
best approximate solution to the intractable posterior p(θ|D):

q∗ = argmin
q∈Q

;D(q||p) (23)

where D(q||p) is typically the Kullback-Leibler Divergence be-
tween the exact posterior and the variational distribution, de-
fined as:

DKL(q|p) =
∫
θ′

q(θ′|ϕ) log
(
q(θ′|ϕ)
p(θ′|D)

)
dθ′ (24)

The above expression quantifies the discrepancy between the
approximate and exact posterior distributions. Instead of di-
rectly minimizing the divergence, a more convenient quantity,
known as the Evidence Lower Bound (ELBO), can be used,
which is related to the KL-Divergence. The ELBO is defined
as:

Eq(θ|ϕ)[log p(D|θ) + log p(θ)− log q(θ|ψ)] (25)

By maximizing the ELBO, we effectively minimize the KL-
Divergence, thereby making the variational distribution closer
to the true posterior. Since the ELBO involves an expectation
with respect to the variational distribution, it still requires
some calculation of the often intractable posterior p(θ|D).

The most common choice for the posterior approximation is
to use multivariate Gaussians, which take the form q(θ|ϕ) =
N (θ|µ,Σ). In this case, the parameters ϕ consist of the mean
µ and the covariance matrix Σ of the Gaussian distribution.
This approach differs from the Laplace approximation, where
the posterior covariance was derived from the Hessian at the
MAP estimate (as shown in equations 15 and 16).

The variational Approximation offers a more global repre-
sentation of the posterior, but it still faces potential challenges
related to locating suboptimal minima and being limited to
specific classes of functions q ∈ Q, similar to the constraints
of the Laplace approximation. Notably, the use of Gaussian
distributions for the approximate posterior might restrict its
expressiveness, unlike methods like MCMC, which do not im-
pose such assumptions and can explore more diverse posteri-
ors[10].

4.4 Deep Ensembles

To address this, other approaches like Deep Ensembles (see
the section (4.4)) have been proposed, which involve training
multiple models with different initialization to capture the un-
certainty and explore different regions of the parameter space.
These ensembles can provide a more robust and comprehensive
representation of the often multi-modal posterior distribution,
as illustrated in Figure 4. In this ensemble-based approach,
the models are equally weighted by a sum of Dirac delta func-
tions, with each function allocating mass to the MAP mode
of a specific model m:

p(θ|D) ≈ 1

M

M∑
m=1

δ
(
θ − θ̂

m

MAP

)
(26)

Here, M represents the number of models in the ensemble,
and θ̂

m

MAP denotes the MAP estimate for model m.

4.4.1 Multi-SWAG

Multi-SWAG ([1]) builds upon the Deep Ensemble concept
and adds an extra layer of complexity by fitting a Gaussian
to each of the local modes, often referred to as basins of at-
tractions, represented by the MAP estimates θ̂

m

MAP. This
is achieved using the SWAG (Stochastic Weight Averaging
Gaussian) approximation, which provides a method to fit these
Gaussians (though we will not delve into its details here). As a
result, the posterior distribution is approximated as a mixture
of Gaussian components:

p(θ|D) ≈ 1

M

M∑
m=1

N
(
θ|θ̂m,Σm

)
(27)
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Figure 4: Figure extracted from [1]. The label w refers to
the model parameters θ in our case. The top-most figure
represents the true posterior distribution p(θ|D) with rep-
resentations of this posterior from variational inference (or-
ange), deep ensembles (blue), and Multi-SWAG (green). The
middle plot represents the conditional predictive distribution
p(y|x,θ). The top and middle part thus make up the compo-
nents of the posterior predictive distribution (2). The bottom
plot represents the distance between the true posterior predic-
tive distribution p and the approximation q.

The key advantage over simple Deep Ensembles lies in the abil-
ity to directly generate new posterior samples at each mode,
thanks to the mixture of Gaussians representation. This ap-
proach provides a more fine-grained approximation of the pos-
terior distribution, allowing for better exploration of the pa-
rameter space and a more comprehensive understanding of
model uncertainty.

4.5 Comparison of posterior approximations

To compare the computation of the predictive distribution us-
ing different methods, namely deep ensembles, variational in-
ference for a single basin, and Multi-SWAG, Wilson et. al. [1]
employed an illustrative example depicted in Figure 4. Re-
call that the posterior predictive distribution is the integral
of the conditional predictive and the posterior both of which
are shown in the top and middle plot respectively. As such we
want to factor of the two to be as large as possible.

Variational inference selects samples from a single basin of
attraction in the posterior p(θ|D), corresponding to parame-
ters θ where the Kullback-Leibler divergence between the true
posterior and the approximate posterior is minimized, as de-
picted in the bottom plot. On the other hand, Deep Ensembles
considers multiple basins of attraction due to being an ensem-
ble of models with different setups, each potentially having a
different MAP estimate θ̂

m

MAP. Understanding how the condi-
tional predictive distribution p(y|x,θ) varies with respect to
the parameters (as seen in the middle plot) reveals the benefits
of sampling from different basins.

Although the probability mass for basins of attraction other
than the one chosen by variational inference might be lower,
their large posterior predictions can still have a substantial
impact on the overall posterior predictive distribution. Con-
sequently, when samples are obtained near θ̂ (ω̂ in the plot),
Deep Ensembles and Multi-SWAG show significant improve-
ments in the posterior predictive compared to variational in-
ference by sampling from additional modes in different basins.

To summarize: having multiple basins of attraction, ob-
tained by distinct components of the ensemble, leads to greater
functional diversity compared to Bayesian approaches that

Figure 5: Figure taken from [1]. Plot (a) the test error and (b)
test negative log-likelihood for the uncorrupted dataset with
respect to the ResNet-18 width. In (c) and (d) we find the test
error and NLL for a partially corrupted dataset. In plot (e) we
find the test error for Multi-SWAG with a varying number of
SWAG models for a the corrupted dataset. We observe that
with an increasing number of SWAG models we reduce the
double descent behaviour monotonically.

primarily concentrate on approximating the posterior within
a single basin of attraction.

4.6 Back to Double Descent

With the insights gained from the previous section, we can
now understand the claim made by Wilson et al. [1] that
Bayesian neural networks do not exhibit double descent be-
havior. This boils down to their ability (for certain approxi-
mations as we will see) to perform an exhaustive multimodal
Bayesian model average [1]. To examine this hypothesis fur-
ther, they conducted experiments using Multi-SWAG, SWAG,
and SGD with ResNet-18 models of varying widths. The re-
sults for error and negative log-likelihood (NLL) are illustrated
in Figure 5. These experiments were also conducted on a par-
tially corrupted dataset, where 20% of the labels were ran-
domly reshuffled (Figure (e) and (d)).

The error plot (c) clearly shows the traditional double de-
scent behavior for SWAG (red curve). However, MultiSWAG
effectively mitigates the issue of double descent by implement-
ing a comprehensive multimodal Bayesian model averaging ap-
proach. As a result, the error curve scales monotonically with
increasing model flexibility, demonstrating the model’s ability
to adapt to different complexities while avoiding the double
descent phenomenon.
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