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Abstract

This thesis explores the potential and advantages of machine-learned force fields in
various applications pertaining to material physics. Through research on two model
architectures Mace and M3GNet with various training strategies, it has been found that
these computational techniques can be used to complement or in certain cases chal-
lenge traditional computational techniques such as Density Functional Theory (DFT)
and Cluster Expansion (CE). Notably, the M3Gnet trained universal force field on an
85,279 large two-dimensional compound dataset has shown a two-fold improvement to
previous work by Wang et al. [40] with an energy MAE of 77 meV/atom after the re-
laxation. The result introduces the possibility for greater accuracy in high-throughput
screenings of novel two-dimensional prototype materials and the creation of an en-
hanced database of stable two-dimensional compounds.
Additionally, the applicability of these universal force fields to an alloy specific force field
using transfer learning was investigated for transition-metal disulfide systems IrRuS2
MoTaS2, MoWS2, NbMoS2, TiFeS2, TiNbS2, TiTaS2, TiVS2 and ZrTaS2, showing promising
improvements in performance in certain cases. Furthermore, for a subset of these alloys,
the material specific force fields were then employed to predict the formation energy
and compared to results obtained from Cluster Expansion. Given that our machine
learning predictions yield improved performance across the board but don’t suffer from
the inherent limitations of on-lattice models such as Cluster Expansion, we foresee our
results paving new avenues in computational modelling of alloys.
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Chapter 1

Introduction

In 1929 British physicist Dirac notably stated that:

The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much to complicated
to be soluble. It there fore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too much computation

Almost a century later, Dirac’s statement remains fundamentally true. Despite our thor-
ough understanding of the Schrödinger equation – the governing equation of quantum
mechanics that uniquely describes the dynamics of any quantum system – solving such an
equation remains a formidable challenge. Indeed, analytical solutions are only possible
for a minuscule subset of very simple systems, namely Hydrogen. This is due to the
exponential complexity that arises in modelling even slightly more involved real-world
system.

In large part, the history of quantum mechanics since its inception has thus been the pur-
suit of meaningful approximations and efficient numerical methods. Techniques such as
Hartree-Fock theory, density functional theory (DFT) and perturbative approaches such
as Moeller-Plesset and an array of other quantum chemistry frameworks have emerged
from this endeavour. Despite these being approximations, they have enabled the predic-
tion and understanding of a host of chemical and physical phenomena, offering increasing
insights into the quantum world.

In recent decades, the staple of computational chemistry has been DFT which has proven
extremely successful in predicting and understanding material properties. DFT methods
however have several limitations, for example in incorporating disorder and describ-
ing properties at finite temperatures. Moreover, depending on the choice of exchange-
correlation functional DFT predictions van vary significantly. This means that for certain
classes of materials, the validation of material properties continues to rely heavily on
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experimental verification, a processes that can be equally time-consuming and costly.

Another main limitation of DFT is its poor scalability and high cost, which limits its ability
to model large and complex crystalline systems, such as alloys. To overcome this limita-
tions the cluster expansion (CE) technique in conjunction with DFT has been a staple in
the last few decades for modelling complex alloys and highly-disordered systems. How-
ever, the applicability and precision of Cluster Expansion heavily relies on the underlying
selection of clusters and still requires some understanding of the systems behaviour which
severely hinders its generalisation capability to other systems. The primary limitation of
Cluster Expansion is its inherent assumption that the atomic configurations or clusters
remain static and don’t significantly relax or change position, which can compromise its
accuracy when a material undergoes physical or chemical changes causing atoms to move
and minimize the system’s energy.

In recent years, motivated by successes of machine learning model in domains such as
vision recognition, language modelling and more recently molecular modelling, machine
learning force fields have become more and more prevalent with the hope of comple-
menting or someday all together replacing DFT and Cluster Expansion. Force fields
are mathematical functions that describe the potential energy and forces experienced by
atoms in a molecular or crystalline system. Classical force fields, rely on empirical pa-
rameters informed by experimental data or quantum mechanical calculations. However,
these approaches often suffer from limitations in accuracy and transferability. Unlike
these traditional methods, Machine Learning Force Fields (MLFF) employ a data-driven
approach, utilising a vast training dataset created through Density Functional Theory
(DFT) calculations for various atomic arrangements. This includes information such as
atomic positions {rDFT

i }, energies {EDFT
i }, forces {FDFT

i }, stresses {σDFT
i }, and if applicable

other material properties.

These machine learning methods can come in many flavours notably but not exclusively,
Kernel-based methods [29] and neural networks (NN)1. Kernel-based methods rely on
specific kernels to define the input-output mapping, which impose severe restrictions
(strong inductive biases) on its capability to generalise to any material. Such restrictions
have the benefit of requiring less data compare to neural networks to obtain reasonable
predictions, provided the capacity of kernel method can capture the complexity of the
problem. For instance, kernel-based machine learning force fields such as Gaussian
Approximation Potential (GAP) have been applied to a range of alloy compositions, such
as the binary system AgPb, and have shown competitive accuracy when compared to
Cluster Expansion [26, 23].

While kernel-based methods, such as Gaussian processes, are viable options, the growing
availability of DFT datasets and growing computational capability make neural networks
a more promising choice for force fields. A key advantage of NNs is their ability to
accommodate any functional dependency providing them with the flexibility to model
complex and simple systems alike. It is beneficial to then embed specific inherent biases

1All these regression models establish a functional relationship between the position of atoms in a systems
and the potential energy surface (PES)
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from the data into the model, a strategy which has driven the success of convolutional
neural networks (CNNs) in image recognition. CNNs specifically encode translational
invariance in their layers without needing to learn this symmetry from data.

When modelling molecules or crystals, we deal with data represented as structures that
naturally exist in three-dimensional space. Therefore it is crucial for neural networks to
respect the inherent symmetries of this space, represented by the SE(3) group, encom-
passing translations, rotations and reflections.

Such SE(3)-symmetry-aware force fields have been constructed using graph neural net-
works and have delivered state-of-the art accuracy for material property predictions -
notable examples include Nequip [32], Mace [44] and M3GNet [18]. Owing to their
substantial improvements in accuracy over traditional techniques like classical neural net-
works or kernel methods, graph neural networks have emerged as a promising tools for
constructing universal machine learning force fields (UFF)2. These models are ’universal’
in their ability to be applied to a wide range of materials, extending beyond the specific
atomic arrangements of types they were initially trained on. Once these universal force
fields are trained, the fast inference time enables the prediction of any material property
at speeds of classical methods, facilitating high-throughput searches across vast material
databases, a feat previously unattainable using only DFT. In the past year, for instance
there has been significant work on the creation of a three-dimensional universal machine
learning force field using the M3GNet architecture [33].

Historically, two-dimensional UFF research has been less prevalent than its three-dimensional
counterpart, largely due to challenges in acquiring suitably sized two-dimensional datasets.
In this thesis, we aim to replicate the success of three-dimensional UFFs in creating a
universal force field for two-dimensional structures by capitalizing on a newly curated
database based on the work of Wang. et. al. [40]. We utilize different models, experiment
with various training methods by adjusting model and data hyperparameters and assess
the performance of each model. This study aims to provide a set of recommendations for
the scientific community on the most-effective practices.

We explore whether there are potential advantages to applying transfer learning from
these universal machine learning force fields to material-specific force fields. This analy-
sis is conducted using a two-dimensional transitional metal disulfide alloy dataset. Fur-
thermore given the widespread use of Cluster Expansion in predicting alloy formation
energies, we aim to determine whether these universal force fields can be directly trained
to predict these energies and at which accuracy. This allows us to ascertain whether or
not these models can serve as an alternative to Cluster Expansion.

The remainder of this thesis is organised as follows. We start by giving a brief overview
of Density Functional Theory. A quick introduction to Cluster Expansion and its role in
alloy modelling will be presented alongside. This will be followed by an introduction into
deep learning where we discuss the most basic neural network architecture, the multi-
layer perceptron, how neural networks learn and briefly talk about transfer learning. In

2In literature also sometimes referred to as universal inter-atomic potentials.
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the subsequent chapter we will give an overview of geometric graph neural networks.
We discuss the role of symmetry and how different architectures embed these into their
models. Lastly we state and discuss our results, give a conclusion and an outlook of
possible future avenues of research.
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Chapter 2

Theory and Computational Methods

2.1 Schrödinger equation

The energy of a many-body system with N electrons and M nuclei is determined by the
Schrödinger equation:

ĤtotΨi(r1, . . . rN ;R1, . . .RM ) = Etot
i Ψi(r1, . . . rN ;R1, . . .RM ) (2.1)

Here ri and Ri denote the electronic and nucleus positions respectively. The Hamiltonian
that describes such a system is given by:

Ĥtot = T̂e + T̂n + V̂en + V̂ee + V̂nn

= −1

2

N∑

i=1

∇2
i −

1

2

M∑

A=1

1

MA
∇2

A −
N∑

i=1

M∑

A=1

ZA

|ri −RA|

+

N∑

i=1

N∑

j<i

1

|ri − rj |
+

M∑

A=1

M∑

B<A

ZAZB

|RA −RB|

(2.2)

where T̂e, T̂n, V̂en,V̂ee and V̂nn represents the electron kinetic energy, nuclei kinetic energy,
electron-nuclei potential, electron-electron potential and nuclei-nuclei potential respec-
tively and i, j iterate through the N electrons and A,B through the M nuclei.

The commonly used Born-Oppenheimer approximation makes the assumption, that due
to their greater mass, nuclei move more slowly compared to electrons. This allows for a
decoupling of the electronic and nuclear degrees of freedom in which the kinetic term of
the nuclei can be neglected. The nuclear problem is simplified to be

V̂nnΨ = EnnΨ (2.3)

while the electronic problem ĤΨ = EΨ is described by the Hamiltonian

Ĥ = −1

2

N∑

i=1

∇2
i −

N∑

i=1

M∑

A=1

ZA

|ri −RA|
+

N∑

i=1

N∑

j<i

1

|ri − rj |
= T̂ + V̂en + V̂ee (2.4)
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with total energy Etot = E + Enn.

2.2 Density Functional Theory

As the name density functional theory suggests, the theory is formulated using an energy
functional of the electron density. The Hohenberg-Kohn theorems provide us with the
knowledge that there is a unique mapping between ground state electronic densities and
external potentials and that the former minimize the energy of an unknown universal
energy functional [1].

Analogous to the Hartree-Fock equations, the Kohn-Sham formalism maps the fully
interacting problem to a simplified non-interacting single electron problem but with a
modified energy functionalEint[ρ]. These electrons move within an effective "Kohn-Sham"
single particle potential veff(r) [20].

The central quantity of interest in the Kohn-Sham formalism is the electron density formed
by the N occupied single-particle orbitals:

ρ(r) =

N∑

i=1

|φi(r)|2 (2.5)

The single-particle Kohn-Sham orbitals φi(r) are obtained from the Schrödinger equation:
(
− ℏ2

2m
∇2 + veff

)
φi(r) = ϵiφi(r) (2.6)

where the effective potential veff is given by

veff(r) = vext(r) +

∫
d3r′

ρ(r′)

|r− r′|
+
δExc[ρ(r)]

δρ(r)
(2.7)

The total energy is then obtained from the following energy functional:

Eint[ρ(r)] = TS [ρ] + EH [ρ(r)] + Eex[ρ(r] (2.8)

=
∑

i

ϵi −
1

2

∫
d3r′

∫
d3r

ρ(r)ρ(r′)

|r− r′|
−
∫

d3rρ(r)
δExc(ρ(r))

δρ(r)
+ Exc[ρ(r)] (2.9)

From the effective potential (2.7) it is evident we need to make some approximation for
the exchange energy Exc[ρ(r)].

The general flow of the self-consistent field calculation within DFT is show in Figure (2.1).
The aim of the self-consistent field calculation is to obtain a solution of the energy-density
functional for which the difference in energy between two consecutive steps satisfies the
convergence hyperparameter defined by the user.
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Guess the trial charge density [ρ(r)]

Calculate effective Potential
veff(r) = vext(r) +

∫
d3r′ ρ(r′)

|r−r′| +
δExc[ρ(r)]

δρ(r)

Solve Kohn-Sham equation(
− ℏ2

2m∇2 + veff

)
φi(r) = ϵiφi(r)

Calculate the charge density
ρ(r) =

∑N
i=1 |φi(r)|2

Converged?

No

Figure 2.1: Flowchart for the self-consistent calculations in DFT. Once the trial charge
density converges in energy we have found the ground state energy which we can then
use to calculate the electronic properties of the system.

2.2.1 PBE Exchange-Correlation functional

The Perdew-Burke-Ernzerhof (PBE) [5] is one of the exchange correlation functional one
can employ in equation (2.9). It is a generalized gradient approximation (GGA) that
improves upon the widely used Local Density Approximation (LDA)

ELDA
xc [ρ(r)] =

∫
ρ(r)ϵxc(ρ(r))d

3r (2.10)

where ϵxc is the exchange correlation energy per particle obtain for a Jellium model of a
uniform electron gas with density ρ(r), by accounting also for gradients of the electron
density, i.e

EGGA
xc [ρ(r)] =

∫
ρ(r)ϵxc(ρ(r),∇ρ(r))d3r (2.11)

The popularity of the use of PBE functionals in computational chemistry and materials
science can be traced back to its substantial improvement of its predictions in addition
to not leading to a significant increase in computational overhead when compared to
standard LDA methods.
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More complicated forms such as hybrid functional that expand on GGA methods by
additionally including exact exchange energies from Hartree-Fock calculations also exist,
but will not be discussed further in detail.

2.2.2 Obtaining forces and stresses in DFT

Many important material properties cannot directly be derived from the energy obtained
from DFT calculations but will depend on derivatives of this energy. Of importance are
mainly forces and stresses acting on the system, which allows us to optimise structural
parameters and derive vibrational properties such as phonons. Classically the force can
directly be obtained from the potential energy via the gradient with respect to the atomic
coordinates:

F = −∇RU(R) (2.12)
In quantum mechanics this connection between forces and energies can be established
through Perturbation theory in the form of the Hellman-Feynman theorem which can be
derived from the reasonable assumption that in quantum mechanics we have

F = −∇R ⟨E⟩ with E = ⟨Ψ|Ĥ|Ψ⟩ (2.13)

In this case we simply have to pay attention to the fact that the wavefunctions are implicit
functions of the atomic coordinates too, requiring the use of the chain rule when differen-
tiating. It is useful abstracting the differentiating to any quantity that implicitly appears
in the Hamiltonian and in the wavefunction through the variable λ. As such we get

∂E

∂λ
=

∂

∂λ
⟨Ψ|Ĥ|Ψ⟩

=

〈
Ψ

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣Ψ
〉

+

〈
∂Ψ

∂λ
| Ĥ|Ψ

〉
+

〈
Ψ|Ĥ|∂Ψ

∂λ

〉

=

〈
Ψ

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣Ψ
〉

+ E

〈
∂Ψ

∂λ
| Ψ
〉
+ E

〈
Ψ | ∂Ψ

∂λ

〉

=

〈
Ψ

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣Ψ
〉

+ E
∂

∂λ
⟨Ψ | Ψ⟩

(2.14)

The last term vanishes since we get a normalized ground state wave function in DFT
⟨Ψ|Ψ⟩ = 1, leading to the so-called Hellman-Feynman theorem:

∂E

∂λ
= ⟨Ψ|∂Ĥ

∂λ
|Ψ⟩ (2.15)

Setting λ = Ri to be the cartesian vector on atom i, one can show from the many-body
Schrödinger equation within the Born-Oppenheimer approximation (using the charge
density representation of the total energy as in DFT) applying the Hellman-Feynman
Theorem yields:

FA = − ∂E

∂RA
= ⟨Ψ|∂Ĥ

∂λ
|Ψ⟩ = −∂Enn

∂RA
−
∫
ρ(r)

∂Ven
∂RA

dr (2.16)
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where Ven are the nuclei-electron interaction potential andEnn the nuclei-nuclei contribu-
tion to the total energyEtot = E+Enn. The force depends thus only on the charge density
as the other terms are fixed for a given set of atoms (fixed atomic charge Z).

The Cauchy stress tensor σ is defined as the negative gradient of the energy per unit
volume Ω = a · b× c (referred to as strain)

σαβ =
1

Ω

∂E

∂ϵαβ
(2.17)

In contrast to the force which is a microscopic quantity as one formulates it for each of the
atoms, the stress is a macroscopic quantity that in a three dimensional system takes the
form of a 3× 3 matrix.

It can be shown that the stress can be calculated through

σαβ = − 1

Ω

∑

i

〈
Ψ

∣∣∣∣∣∣
1

2µi
∇iα∇iβ − 1

2

∑

j ̸=i

(qj − qi)α (qj − qi)β
qij

(
d

dqij

)
V̂

∣∣∣∣∣∣
Ψ

〉
(2.18)

where i, j run over all electron and nuclei and qi = {rj ,Rk} representing all spatial
coordinates of the nuclei and electrons.

2.3 Formation Energy

The formation energy represents the change in energy when a compound forms from
its constituent elements in their most stable states. In general the formation energy is
computed as follows:

EF = Etotal −
∑

i

λiE
element
i (2.19)

where λi is the multiplicity of the element in the formula unit of the compound. However
since we are going to be concerned with the formation energy of ternary alloys (AB) where
A and B are binary structures, this formula can conventionally be rewritten as

EF = E(AB)− [xE(A) + (1− x)E(B)] (2.20)

whereEF is the formation energy of the ternary alloy,E(AB) the total energy of the alloy,
E(A) and E(B) the energy of the most stable binary phases A and B respectively and
x is the percentage of A in the alloy. Under standard conditions, a negative formation
energy implies alloy stability and spontaneous formation, as the energy of the combined
state is lower than the individual energies of the elements. Phrased differently, negative
formation energies represent exothermic compounds in which the energy released during
the formation of the compound, in the process of making new bonds, is greater than the
energy required to break the existing bonds of the reactant elements.
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2.4 Cluster Expansion and Alloy Modelling

The modelling of alloys with DFT poses many inherent challenges. One particular chal-
lenge is the exponential increase of possible atomic configuration in multicomponent
systems with respect to the number of constituents and system size. For accurate thermo-
dynamical predictions of alloy properties, detailed DFT calculations are required for all
possible configurations, which is a very resource-intensive task.

Successful approaches that have attempted to tackle this problem areand off-lattice models
such as gaussian approximation potentials (GAP), atomic Cluster Expansion (ACE) and
machine learning force fields

Efficient strategies that have aimed to address this issues include Cluster Expansion
(referred to as a on-lattice models) and off-lattice models such as Gaussian approximation
potentials (GAP) and Atomic Cluster Expansion (ACE). This section will focus specifically
on the conventional on-lattice Cluster Expansion approach, while ACE will be discussed
later in section (3.7.1) [19, 23, 24].

In alloy systems, atoms can arrange themselves in various configurations, forming distinct
clusters with specific atomic arrangements. Cluster Expansion uses these atomic clusters
as the building blocks to represent the alloys energy by assuming that the total energy
of the alloy is given by a sum of contributions from different clusters {α, β . . . } and their
respective inter-cluster interactions (often also referred to as effective cluster interaction
or ECI) denoted by Jα [2].

The methodical treatment of a multi-component substitutional system begins by mapping
the original system to a lattice model. The underlying assumption here is that there is
a unique mapping for any particular occupation, denoted as σ1 to an ideal lattice L,
where the deviation of the atomic sites from the ideal lattice sites would be small. The
configuration σ is defined by specifying the occupation of any lattice site p by a site
variable σp.

In the case of a generic binary substitutional alloy A1–xBx these ‘occupation‘ number take
the values +1 and -1 if the site is occupied by A or B respectively. 2

For a multi-component system with N sites that are symmetrically equivalent and can
be occupied by M different atomic species, a configuration state is described by an N -
dimensional vector of site variables σ = (σ1, σ2, . . . σN ). Assuming that the site p can be
occupied by one of M species, the site variable σp takes one of (±M/2, . . . ,±1) when M
is even and (±(M − 1)/, . . . ,±1, 0) when M is odd.

Let V denote the multiplicity weighted ECI (effective cluster interaction)

Vα = mαJα (2.21)

1not to be confused with the stress σ
2It should be noted that the system can contain other components, e.gC in A1–xBxC which are not explicitly

indicated by the occupation number.
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where V = [V0, V1, . . . , VNc−1]
T denotes the column vector of all ECIs and Nc the number

of clusters considered. The Cluster Expansion then parametrises the energy (per atom)
of the alloy as a polynomial in the occupation variables obtained through some choice of
orthonormal basis 3

E(σ) =
∑

α

mαJα ⟨ϕα(σ)⟩ = ϕ(σ)V (2.22)

where ϕα(σ) = [ϕ0, ϕ1, . . . , ϕNc−1] is the cluster correlation function and is the average of
the product of "spin" variables (or occupation number) σi defined for each site i in the
cluster α:

ϕα(σ) =
1

Nα

∑

β⊂α


∏

i∈β
σi


 (2.23)

where the sum is over all the subclusters β contained within cluster α and Nα represents
the number of subclusters in cluster α. This is a tensor product similar to the ACE and
MACE construction as we will later see.

For a multi-component system however the cluster correlation function in equation (2.23)
needs to additionally incorporate orthogonality with respect to the different atomic species
M . One common choice are Chebyshev Polynomials:

Θb,M (σp) =
M−1∑

m=0

c(b)m σ(b)p (b = 0, 1, . . .M − 1) (2.24)

where the coefficients c(i)m are determined from the orthogonality condition:

〈
Θb,M

∣∣Θb′,M

〉
=

1

M

∑

σp

Θb,M (σp)Θb′,M (σp) = δb,b′ (2.25)

The tensor product of the site basis functions then spans a basis on the collective space of
N sites:

ϕ(σ) =

N∏

p=1

Θbp,M (σp) (2.26)

which can be used as cluster correlation function in (2.22) to estimate the energy for
multi-component alloys.

When considering all clusters α that are included in the summation in (2.22), it follows
that the Cluster Expansion is capable of representing any functionE(σ) of a configuration
σ through suitable choices of Jα. However, the real merit of the Cluster Expansion lies
in its practical application. Even a relatively small number of terms in the expansion can
effectively capture the most important contributions to the total energy.

3Note the similarities of the energy with the Ising Hamiltonian
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2.4.1 ECI Selection

As a last step, the coupling coefficients (ECIs) Jα have to be determined. The most
straightforward method involves minimising the difference between the total energies of
a relatively small number of crystal structures with different ionic configurations obtained
from DFT and comparing those to the predictions of the total energy from the truncated
Cluster Expansion. This approach is referred to as structure inversion method and was
very prevalent in the early days of Cluster Expansion.

As the Cluster Expansion method matured and the number of terms in the expansion
(and data points changed from a handful to thousands) the regression technique embraced
big-data techniques such as simulated annealing, genetic algorithms and also Bayesian
methods [23].

Structure inversion

In structure inversion we use the total energy of small number Ns of structures obtained
from DFT as the training set and determine V and in turn Jα through standard least-
squares (LS) regression technique. The loss function to be minimised is chosen to be
[41]

LLS(V) =

Ns∑

i=1

[
Ei −

Nc−1∑

a=0

Vaϕa (σi)

]2
(2.27)

where Ei = E(σi) is the DFT energy of configuration σi. A well known result of least-
squares regression is that the minima of this loss function with respect to V possesses a
closed-form solution of

V̂LS =
[
XTX

]−1
XTE (2.28)

In this setup,X represents anNs×Nc matrix whereXiα = ϕα(σi). The vectorE is a column
vector comprised of Ns directly computed energies, denoted by E = [E1, E2, . . . , ENs ]

T.
To avoid overfitting it’s typically necessary for the number of training data points (Ns)
to significantly outnumber the number of clusters (Nc) if using standard least squares
regression.

One can characterise the fitting error by the following root mean squared error (RMSE) of
fitted energies

∆fit =

√√√√ 1

Ns

Ns∑

i=1

[
Ei −

Nc−1∑

a=0

V̂aϕa (σi)

]2
(2.29)

This equation evaluates the square root of the average squared differences between the
observed energies and the predicted values based on the fitted model.

2.5 Machine and Deep Learning

Machine learning approaches can be divided into three main paradigms, supervised,
unsupervised and reinforcement learning. In this thesis we will mostly be concerned
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with supervised learning where given a dataset D consisting of tuples of feature vectors
x and labels yi {(xi, yi}) serving as input to the machine learning algorithm, we try to
predict the output labels ŷi given the input feature vector xi. Depending on whether the
labels domain ŷi is on a finite set of classes or the space of real numbers we are concerned
with a classification or regression task respectively.

In recent times, deep learning, a technique grounded on using neural networks and a sub
field of machine learning has been behind the success of many of the breakthroughs in AI
such ChatGPT and AlphaFold. This success is driven by the capacity of neural networks
to greatly benefit from ever increasing quantities of data. Additionally the increase in
computational abilities of modern machines has enabled deeper and deeper networks4.
Although neural networks have outgrown the capabilities of more traditional machine
learning algorithms such as support-vector machines and kernel-based models, to name
a few, they have major pitfalls such as interpretatbility and uncertainty estimation which
still limits their broad adoption and applicability in the physical and medical sciences.

As alluded in the introduction, neural networks fundamental strength however lies in
their ability to capture any functional dependence between input and output, allowing
them to be used on any type of data. More precisely the universal approximation theorem
states that a feed-forward neural network with a single hidden layer can approximate any
continuous function given enough hidden neurons and appropriate activation functions.
The downside of this is that since the parameter space to explore is larger, complex input-
output relations can require more data than more traditional approaches to get similar
outcomes for certain relatively simpler problems.

Apart from parameters that are learned during training, machine learning models also
depend on hyperparameters. These are manually determined by the operator or through
an automated procedure and can significantly impact the performance of a model, which
can be be viewed as another disadvantage of machine learning, given that an extensive
hyperparameter search - exploring numerous hyperparameter combinations - is often
required to identify the most optimal model.

The most notable hyperparameters include the learning rate α in gradient descent (elab-
orated on in section (2.5.2)) and the batch size. The batch size determines the number of
data points used for training in one cycle before the model parameters are updated.

2.5.1 Multi-Layer Perceptron

The perceptron is the simplest supervised learning neural network with a single input
and output layer representing our predictor quantity. Assuming the training data has d
inputs and a single output y, the perceptron prediction is given by

ŷ = sign{Wx+ b} = sign{
d∑

j=1

wjxj + b} (2.30)

4deeper referring to the number of layers used in a neural network.
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where the input layer represents the information from d-feature vectors x = [x1, . . . xd] in
its d nodes, W = [w1, . . . wd]

T representing all the edges between the input nodes to the
single output node and b ∈ R corresponding to the bias. Subsequently the sign function,
serving as a so-called activation function Φ, maps the aggregated value

∑d
i=1wixi + b to

the values +1 or −1.

Input Layer Hidden Layer Output Layer
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b)

Figure 2.2: a) Schematic representation of an MLP b) Pictorial representation of the steps
involved in node output computations.

Although the original perceptron was an algorithm for supervised learning for binary
classifiers, its core principles can be extended to include other types of learning and
capture more complex functions by relaxing the condition on the activation function to
include non-linear function and introduce so-called hidden-layers as well as a variable
output layer dimension. Such types of neural networks go under the name of Multi-layer
Perceptron (MLP) and are often interchangeably used with feed-forward neural networks.
In such networks each of the neurons in the previous layer feed into each neuron in the
successive layer, for all the layers going from input to output. The perceptron can thus
really be seen as the fundamental unit of computation or neuron in a neural network from
which most modern architectures are constructed.

Formally if an MLP contains p1, . . . pk units in each of its k-hidden layers then the vec-
tor representations of these hidden states denoted by h1, . . .hk have dimensionalities
p1, . . . pk. The weights of the connections between the input layer and the first hidden
layer are then contained in the matrix W1 with size d× p1 where d is the input dimension
of the features. The weights between the t-th hidden layer and the (t+1)-th hidden layer
are denoted by a pt × pt+1 matrix W(t)

5. The weight matrix connecting the final layer is
then given by o×pk where o represent the number of nodes in the output layer and pk the
number of hidden units in the last hidden layer. As such an MLP follows the following

5So the number of units in the (t + 1)-th layer defines the number of rows, whereas the number of units
in the t-th layer defines the number of columns
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recursive procedure:

h(1) = Φ(W(1)x+ b(1)) [Input to Hidden Layer]
h(t+1) = Φ(W(t+1)h(t) + b(t)) ∀t ∈ {1, . . . , k − 1} [Hidden to Hidden Layer]

o = Φ(W(k+1)h(k)) [Hidden to Output Layer]
(2.31)

where x ∈ Rd is the input feature vector and Φ is the activation function.

The individual neuron contributions (different components of the hidden state vector h(t)

for the (t + 1)-th hidden layer taking inputs from the t-th hidden layer h(t)) are then
explicitly given by

h
(t+1)
j = Φ

(
pt∑

i=1

w
(t+1)
ji h

(t)
i + b(t)

)
(2.32)

where w(t+1)
ji is the component of the weight matrix W(t+1) and h(t)i represent the hidden

components of the t-th hidden layer that serve as input to the (t+ 1)-th layer.

Once the architecture has been decided on (i.e how many layers, what kind of activation
functions), we find that the network outputs ŷn depend soley on the input x and the
parameters θ = {W(t), b(t)}, t ∈ 1, . . . k with θ ∈ Θ. Formally we can thus represent the
predictions ŷn of the Neural Network as the following functional dependence:

ŷn = f(xn;θ) (2.33)

2.5.2 Training and Evaluation

The goal of the training process to learn the functional representation ŷn in equation (2.33),
given a dataset D by modifying the weights and biases. To quantity the validity of the
trained functional dependence, a scalar-valued loss-function L : Θ → R (or cost-function)
is introduced6.

In regression problems (where the estimator ŷ is real-valued), common loss functions
include L1 and L2 losses:

• Mean squared error (MSE)

MSE(θ) = 1

N

N∑

n=1

(yn − f(xn;θ))
2 (2.35)

6For example in classification tasks, loss functions usually take the forms of some type of categorical cross
entropy or Kullback-Leibler Divergence7 (in analogy to entropy in information theory):

KL = −
N∑

n=1

(yn log(ŷn) + (1− yn) log(1− ŷn)) (2.34)

19



Chapter 2. Theory and Computational Methods Fabian Jaeger

• Root-mean squared error (RMSE)

RMSE(θ) =
√

MSE(θ) =

√√√√ 1

N

N∑

n=1

(yn − f(xn;θ))2 (2.36)

• and Mean absolute error (MAE)

MAE(θ) = 1

N

N∑

n=1

|yn − f(xn;θ)| (2.37)

We note that the MSE and RMSE penalize large residuals (ŷ− y) more compared to MAE
resulting in more outlier-sensitive training. Evidently the choice of loss function can
strongly affect the quality and efficiency of training.

Optimisation algorithms: Gradient descent

Once a loss function L is defined, the goal of training is then to find the minima of this
loss function with respect to the implicit parameters θ. These parameters represent the
optimal set

θ∗ = argmin
θ∈Θ

L(θ) (2.38)

The most basic differentiable optimisation algorithm is gradient descent. This iterative-
first order method aims to locate the minima of a function, considering only gradient data
and neglecting curvature information.

Initially, a random starting point for the network parameters θ0 is selected. Subsequently,
through the process of gradient descent, the parameters are iteratively updated by taking
steps equivalent to the negative of the gradient (or estimation of the gradient) of all
training samples:

θt+1 = θt − αt∇θL(θ) |θt (2.39)

where αt is the step-size or learning rate. Such a gradient step in which the entire dataset
is used to update the parameters θ is referred to as epoch. If the learning rate α is too
small, we run the risk of getting stuck in a local minimum whereas if α is too large,
we may be unable to locate a minimum. Such t-iterations (epochs) are performed until
the optimisation method reaches a stationary point where the gradient gt = ∇θL(θ) |θt

vanishes. This set of parameters corresponds to the optimal set of parameters θ∗. 8

Popular extensions of gradient descent that are commonly employed in practice are
stochastic gradient descent and its variant ADAM. These methods prove advantageous,
largely due to the fact that stochastic gradient methods update the parameters θ after
each batch rather than after the completion of the full training set, thereby speeding up
the training processes significantly.

8Concretely for the case of an MLP, gradient descent thus updates all the weights matrices W and the bias
vector b in each epoch.
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Updating the weights and biases9 and computing the gradients in the optimization algo-
rithms over all the parameters θ that appear in (2.39) is done using the back-propagation
algorithm. In modern machine learning framework such as PyTorch [21] and Tensor-
flow [9] the backpropagation algorithm is efficiently implemented through reverse-mode
automatic differentiation.

2.5.3 Training, Testing and Validation

In practice not the whole data set D is used for training but a small subset of validation
and testing samples are retained for evaluation and thus referred to as holdout sets. This
is crucial since we want to evaluate the performance of the model on unseen data to
ensure it generalizes well. These are typically defined in percentages of the whole dataset
with common splits including (80,10,10) and (70,15,15) for training, validation and testing
respectively.

Typically, after one epoch of optimizing the model parameters θ using the training dataset,
the model is evaluated on the validation dataset to obtain an intermediate result to how
well the model generalizes. The validation loss can be used to probe whether under- or
overfitting is present and inform necessary changes to hyperparameters and neural net-
work architecture or the addition of regularization techniques to improve generalization.

After the model has been optimized on the validation and training set, the test set serves
as the final evaluation of the trained model as an unbiased measure to how well the model
predicts unseen data. The evaluation of the model on this dataset should not inform any
further architecture or hyperparameter changes since that could incur an overfitting to
the test set, which defeats the purpose of it as an unbiased estimate in the first place.

2.5.4 Generalisation and Bias-Variance tradeoff

Evidently from the last section, the goal of any optimisation algorithm is not the loss
function minimisation but rather the generalisation capability of a model. To better un-
derstand what yields good generalization capabilities it is beneficial to consider machine
learning in a probabilistic framework in which our models are described as a distribu-
tion of possible functions. Such a probabilistic perspective can be enlightening especially
when we wish to additionally treat uncertainties for our predictors and formally define
notions of generalization, underfitting, overfitting and capacity.

One such fundamental concept that quantifies the generalization capability of a model is
the bias-variance tradeoff10. If we chose the mean-squared error to evaluate our model it
can be shown that it is dictated by the bias and variance of the model as follows:

MSE(θ) = E[(ŷ − y)2] = Var[ŷ] + Bias2[ŷ] (2.40)

9The error from the forward pass needs to propagate back through the network to determine which nodes
contribute to the overall loss and inform how to update them to obtain a smaller overall, loss.

10Although the explicit dependence is on the predictor we we will denote the functional dependence on
the implicit parameter θ of the predictor (recall ŷ = f(x,θ)).
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Figure 2.3: Visualisation of the Bias-Variance tradeoff. The y-axis can be interpreted as an
Error.

The bias of the estimator ŷ:

Bias[ŷ] = E[ŷ]− y = E[f(x;θ)]− y (2.41)

measures the expected deviation from the true value of the function or parameter11. High
bias leads to a model that is too simple (small capacity) to fit the data properly, resulting
in underfitting.

The variance
Var[ŷ] = E[ŷ]2 − E[(ŷ)2] = E[f(x;θ)]2 − E[(f(x;θ))2] (2.42)

provides a measure of the deviation from the expected value that any particular sampling
of the data is likely to cause. High model variance indicates that the model is too complex
and learns the random fluctuations (or aleatoric error) in the training data, resulting
in overfitting. Such models perform very well on the training data but are unable to
generalise well to unseen data.

From equation (2.40) we see that the goal in machine learning models is to strike the right
balance between bias and variance since reducing one type of error (bias or variance)
usually leads to the increase of the other, as can be seen in Figure (2.3). The bias-variance
tradeoff indicates that the optimal model complexity with the smallest generalization error
is obtained by balancing model simplicity (large bias) and complexity (high variance).

11An unbiased estimator is one for which Bias(θ̂) = 0 for which we get E[ŷ] = y.
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2.5.5 Transfer Learning

Instead of randomly initializing the parameters θ0 of a model, transfer learning leverages
pre-trained models with pre-determined parameters θ0 as a starting point for training
on a different but similar task. The motivation for transfer learning is that pre-trained
models on a large dataset, have already learned how to extract relevant features and
general patterns of the data and instead of discarding this knowledge it can be employed
on a different problem to improve the accuracy. In a neural network, this can mean that
most of the layers are ‘frozen‘ and only the last few layers of the Neural Network are
modulated to learn the intricacies of the current problem.

Compared to normal training, transfer learning thus requires much less data since we
are essentially learning a much smaller neural network this usually results in similar or
improved performance to normal training with a much faster convergence rate.
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Chapter 3

Geometric GNNs and Representation

Learning

Graph Neural Networks (GNNs) represent a new class of machine learning models de-
signed to exploit relationships present in data that can naturally be modelled using graphs
G = (V, E) that are comprised of a set of objects V (nodes) and their pairwise relation-
ships eij ∈ E (edges). Such GNNs have been successfully applied to social systems and
networks and as recommender systems.

Borrowing from the success of graph neural networks from other domains, materials
representation learning using geometric graph neural networks 1has emerged as a promising
candidate for the creation of universal machine learned force fields (UFFs), able to predict
forces (node-level predictions) of atoms and energies (graph-level prediction) for a large
set of structures and chemistries.

Materials serving as inputs to such MLFFs are represented using geometric graphs. Ge-
ometric graphs G = (A,S, C⃗, V⃗) in contrast to normal graphs embed each node in eu-
clidean space in addition to modelling scalar quantities embedded in the adjacency matrix
A ∈ Rn×n, describing the connectivity of each node in the graph and S ∈ Rn×f describing
scalar features si ∈ Rf such as the individual atom types Zi of the i-t atom in the unit cell.
Here n denotes the number of nodes and f the scalar feature dimension. In such geo-
metric graphs in addition to these scalar values we also have geometric quantities such as
velocity or forces, represented by V⃗ ∈ Rn×3 and node coordinates C⃗ = [r1, . . . rn] ∈ R3×n

where n is the number of nodes.

In this chapter, we will elaborate on the current landscape of these universal machine
learning force fields. We will describe the current most prevalent machine learning force
field architectures, introduce message-passing neural network that serve as a founda-
tion for many of these and discuss challenges, tradeoffs and avenues of improvement.
A common theme among many architectures is the efficient embedding of symmetry.

1GNNs that embed symmetries are often referred to as geometric GNNs.
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As such, a discussion of the required symmetries for a crystalline system and different
implementations is conducted.

3.1 Machine learned Force Fields

Current implementations of MLFFs can broadly be classified as either descriptor-based
or end-to-end [29].

Descriptor-based MLFF were the first types of models to be introduced that use fixed
encoding rules of the local atomic environment are used as inputs to the neural network.
Examples include the original Behler-Parrinello force field network [7, 8, 29].

End-to-End MLFF, which we use in this thesis, are a more recent development, where
the embedding of the chemical charges, Cartesian coordinates and other node features
from geometric graphs are learned by the model. Most such MLFF frameworks employ a
Message-Passing Scheme on graphs formalized by Gilmer et al. [10], which we will introduce
in section (3.3). Through this message passing between nodes (essentially an information
exchange), chemical interactions can be modelled without the need of hard-coding them,
thus allowing for greater flexibility and variety of interactions.

The training of MLFF on graphs follows the same concepts as traditional neural network
training introduced in the last chapter. In a first step, the atomic energies Êi are predicted
from the model using the atomic positions ri and chemical elements Zi. The total energy
Ê is then obtained as the sum of the individual atom contributions Êi

E =
N∑

i=1

Êi (3.1)

and the forces as negative gradient of that PES with respect to the atomic coordinates (this
works because of conservative forces):

Fi = −∇riE ((r1, Z1) , . . . , (rn, Zn)) (3.2)

To ensure energy conservation, most methods compute the per-atom force as the gradient
of the predicted energy. The stress σ is computed using

σ =
1

V

∂E

∂ϵ
(3.3)

where V is the volume and ϵ the strain.

To assess the accuracy of the model we formalize the notion of a loss function represented
as a linear combination of energy, forces and stress losses for MLFFs:

L = λELE(Ê, EDFT) + λFLF

(
F̂,FDFT

)
+ λσLσ(σ̂,σ) (3.4)

where λE , λF , λσ are the weights for energies, forces and stress, the quantities with hats
correspond to the predicted values and the DFT values as ground truths. LE ,LF ,Lσ

represent the mean absolute error, as introduced in the last chapter.
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Much like the broader field of machine learning, achieving a suitable tradeoff between the-
oretical expressiveness [45] of representations and efficiency is paramount. Given the in-
herent difficultly in modelling interactions of complex structures, however, compounded
by scalability issues that commonly arise in Graph Neural Networks, the creation of UFF
presents itself as particularly challenging.

3.1.1 Symmetry and equivariance

The third challenge is the successful and efficient incorporation of symmetry into our
models. Concretely, we want the predictions of the model not to depend on the arbitrary
choice of reference frame in which we describe our structure, which requires our models
to satisfy:

• Permutation invariance: We denote the permutation operation by Pσ then for any
geometric graph node we require the following for permutation invariance:

PσG = (PσAP
T
σ , PσS, PσV⃗, PσC⃗) = (A,S, V⃗, C⃗) (3.5)

• SE(3) equivariance: Consists of translation and rotations (we may also considerSE(3)
which additionally includes reflections). Any scalar/vector or tensor predictor
of our model f should be invariant/equivariant to any group operation in E(3)2
respectively. RotationsR and translations t should act on the geometric graph nodes
(si, v⃗i, r⃗i) as follows

(si,Rv⃗i,R(⃗ri + t)) ∀i ∈ V (3.6)

Meaning rotations and reflections should only act on vector v⃗i ∈ V⃗ and coordinates
r⃗i ∈ C⃗ but leave the scalar features si ∈ S invariant and translations only act on the
coordinates r⃗i ∈ C.

Formally a function f : X → Y is equivariant with respect to the group G that acts on X
and Y if:

DY [g]f(x) = f(DX [g]x), ∀g ∈ G, ∀x ∈ X (3.7)

where DX [g] and DY [g] are the representations of the group element g in the vector
spaces X and Y , respectively. Invariance is a type of equivariance where DY [g] = 1 for
all elements of the group g ∈ G.

For example, the energy prediction, corresponding to a scalar value, of our model for
an arbitrary 3D molecular or crystal structure should not change (remain invariant) if
the molecule or crystal is translated or rotated in 3D space (equivalent to a translation
or rotation of the underlying reference frame). The energy-predictions should thus be
SE(3)-invariant. The per-atom-force predictions (vectors) however need to exhibit SO(3)-
equivariance and translational invariance. This is because we want the force vectors to
adjust their orientation in response to any rotation applied to the input structure accord-
ingly. This has the convenient consequence that unlike invariant models that rely on the

2SE(3) stands for special Euclidean group in 3D and is the semidirect product of SO(3) with a translation
group.
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derivative of the energies to obtain the forces, equivariant MLFFs can directly predict the
forces [51].

Implementing translation invariance in our model is straightforward due to the fact that
most physical quantities of interest rely on the relative distances between entities rather
than their absolute positions. As such, if we simply featurize distances and not absolute
position, our predictor f will be translational invariant.

Incorporating the SO(3) rotation invariance/equivariance, mentioned above for energies
and forces, jointly in a GNN model can be realized if under any element in the rotation
group g ∈ SO(3), represented in 3D space by R(g), and vector r ∈ R3, the predictors f of
our model satisfies (acting on the coordinate channel of the geometric graph):

f(R(g)r) = Dℓ(g)f(r) (3.8)

Here we exploit the fact that the irreducible representations of SO(3) are indexed by
different ’rotation orders’ ℓ (or angular frequency in analogy to quantum mechanics) that
decouple. Each of these different irreducible representations have dimensions (2ℓ+1) for
ℓ ∈ N and are unitary. In real space, these irreducible representations take the form of
Wigner D-matrices Dℓ, which map elements of SO(3) to (2ℓ+ 1)× (2ℓ+ 1)-dimensional
matrices. The predictor function f in such a representation is thus indexed by the rotation
order ℓ and we have f : R3 → R(2ℓ+1).

The rotation orders ℓ = 0, 1, 2 correspond to scalars, vectors in 3-space and symmetric
traceless matrices respectively. In the case of scalars these Wigner-D matrices are given
by D(0)(g) = 1 since scalars do not change under rotation essentially corresponding to
the invariance property where the can recover the energy prediction, while for ℓ = 1
corresponding to 3-vectors we getD(1)(g) = R(g) where R represents the rotation matrix
and the predictor function can represent force vectors.

One common way to encode the geometric information contained in C into SE(3)-
equivariant features is through a spherical harmonics representation. Spherical harmonics
map an input 3D vector r from the coordinate matrix C to a (2ℓ + 1) dimensional vector
and are equivariant to order ℓ rotations R(g). That is for all g ∈ SO(3) we have:

Y ℓ
m(R(g)r) =

∑

m′

Dℓ
mm′(g)Y ℓ

m′(r) (3.9)

The 2ℓ+1 spherical harmonics indexed bym represent the irreducible representations of
SO(3) for the closed subspace of ℓ-ordered rotations. They are indexed by the ‘magnetic
number‘m. As such this can also be written in vector notation where for an order-ℓ rotation
we obtain a spherical harmonics vector of dimension (2ℓ+ 1). Here Dℓ(g) represents the
Wigner D matrix as above.

One way to enforce symmetry in our predictions would be through symmetry-aware
data augmentation. However, since translation and rotation are continuous symmetry
operations in theory an infinite number of data points have to be generated to capture
all possible symmetry operations in the data. Furthermore, there are no guarantees the
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final model actually enforces true equivariance or simply creates approximate equivariant
prediction.

A much more data-efficient approach would be incorporating symmetry constraints right
in our model (or more precisely, each layer of the model), which serve as very strong
inductive biases that can help narrow the parameter space the model needs to search
(reducing the degree of freedoms of learning). Such symmetry-aware models have had
significant success in recent years and come in many different flavors. These will be
elaborated on in the next section.

3.2 Outline of existing molecular MLFFs

Existing 3D GNN layers used for MLFFs can broadly be categorized by their tensor order ℓ
and body order v and whether the intermediate node features are invariant or equivariant.
Tensor order refers to the discussion in the previous section about rotation orders for
the featurization of the geometric information, such as positions. Networks with ℓ = 0
are invariant 3D GNNs that only contain scalar features, such as SCHNet (2017) [14]
and DimeNet (2020) [34]. This mean concretely that only invariant geometric features
such as distances and angles are encoded and featurized for our nodes and edges and
so all internal features over the entire network are going to be rotation and translational
invariant (i.e not change when the input structure is translated or rotated) and transform
according to Dℓ=0(g) = 1 in equation (3.8) [36, 45].

Equivariant 3D GNNs not only capture these scalar-invariant features in their nodes and
edges but can also accommodate vector type features with ℓ = 1, such as PaiNN (2021)
[28] and even higher-order features with ℓ ≥ 1, for example Tensor Field Network (2018)
[15], Nequip (2021) [32], Mace (2022) [30]. These vector and tensor features undergo
non-trivial, equivariant transformations when the input structure is rotated or translated.
Most of these models are based on the e3nn (Euclidean Neural Networks) framework [35].

While Tensor Field Networks, Nequip and Mace rely on tensor contractions involving
Clebsch-Gordan coefficient to model equivariant interactions, PaiNN [43] takes a different
approach by directly modelling equivariant interactions in Cartesian space and therefore
avoiding the need for tensor contractions.

All the aforementioned GNN models rely on constructing message-passing involving the
interactions of at most three local neighbors. Higher-order models such as Mace take
inspiration from atomic cluster expansion and the decomposition of the potential energy
surface (PES) as a linear combination of ν+1-body-ordered function (with ν representing
the correlation order). Each body order indicates how many nodes are involved in the
message construction. The relation between the two is given by d = ν + 1 with the
additional +1 originating from the counting the central atom i.):

Ei = f1(σi) +
N∑

j

f2(σi, σj) +
∑

j1,j2

f3(σi, σj1 , σj2) + · · ·+
∑

j1,...jv

fv(σi, σj1 , . . . , σjv) (3.10)

28



Chapter 3. Geometric GNNs and Representation Learning Fabian Jaeger

Here i signifies the index of the central atom, j corresponds to the index of the neighbor
node from i, i.e j ∈ N (i) and σi = (ri, Zi) denotes the atom state. A body-ordered
expansion of the PES is beneficial when the series can be truncated at some finite body
order d. This is feasible when higher-order terms are sufficiently insignificant to not
substantially influence the overall PES and there is empirical evidence that for many
systems this is the case [19].

3.2.1 Periodic information and long-range interactions

The decomposition of the total energy into atomic energies used in most MLFFs, as
shown in the equation (3.1), is an approximation of the PES. The energy Ei for each atom
is computed through some type of message-passing scheme that only takes into account
information from other nodes within a small cutoff radius rc around the central atom
i. However, this localized approach fails to account for long-range effects. This issue is
particularly problematic for crystalline MLFFs. Although the aforementioned molecular
MLFFs frameworks are compatible with crystalline data, the unique structure of crystals
with a periodically repeating unit cell offers a challenge. Therefore, in addition to E(3)-
equivariance and permutation invariance we also need crystalline MLFFs to consider
periodic information3 and long-range effects to construct a geometrically-complete model.

In other words, effective crystalline representational learning has to additionally incorpo-
rate the transmission of periodic information (such as lattice lengths) in addition to the
local geometric and atom state features. Periodic invariant multi-edge graphs that capture
this periodic information are for example Matformer [42], PotNet [49] and Ewald-MP
[46] which include additional features during the message-passing scheme to address
the limitation of lacking periodic information. For example, Ewald-MP captures periodic
information by a long-range signal (large frequency cutoff) in Fourier space while main-
taining the short-range signal of the local environment due to a small cutoff radius for
the message-passing scheme. A comparison of many of the frameworks can be seen in
Table (3.1).

3.3 Message-Passing Neural Networks

Message-passing Neural Networks (MPNN) [11] represent a general class of permutation-
equivariant Graph Neural Networks where graph node representations, represented using
a T -Layer MLP, are updated by aggregating messages received from their neighbours. A
visual representation of the MPNN framework can be seen in Figure (3.1).

Concretely, the message passing operation starts off by constructing m
(t)
i for each node

i ∈ V in layer t by aggregating message functions ψ(t) from all neighboring nodes j ∈ V

3Crystalline materials are therefore often represented as periodic graphs.
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Models Periodic Invariant Symmetry Periodic Pattern Body Order (layer)
SchNet (2017) ✓ E(3) invariant ✗ 2
CGCNN (2018) ✓ E(3) invariant ✗ 2
TFN (2018) ✓ E(3) equivariant ✗ 2
MEGNET (2019) ✓ E(3) invariant ✗ 2
ALIGNN (2021) ✓ E(3) invariant ✗ 3
PaiNN (2021) ✓ E(3) equivariant ✗ 3
Nequip (2021) ✓ E(3) equivariant ✗ 2
M3GNet (2022) ✓ E(3) invariant ✗ 3
MACE (2022) ✓ E(3) equivariant ✗ higher-order
Matformer (2022) ✓ E(3) invariant ✓ 2
PotNet (2023) ✓ E(3) invariant ✓ 2
Ewald-MP (2023) ✓ E(3) invariant ✓ 2

Table 3.1: Overview of different Graph Neural Networks (crystal graph neural networks
with periodicity information and conventional molecular GNNs) mentioned in this thesis
[51]

in the vicinity N (i) of node i via a permutation-invariant local pooling operation
⊕

4:

m
(t)
i = fAgg

[
h
(t)
i , {h(t)

j , eij | j ∈ N (i)}
]
=

⊕

j∈N (i)|(i,j)∈E

ψ(t)(h
(t)
i ,h

(t)
j , eij) (3.11)

For each message-passing iteration, the hidden state of each node i ∈ V for the next layer
(t+ 1) is then updated according to

h
(t+1)
i = fUPD[h

(t)
i ,m

(t)
i ] = ϕ(t)


h

(t)
i ,

⊕

j∈N (i)|(i,j)∈E

ψ(t)
(
h
(t)
i ,h

(t)
j , eij

)

 (3.12)

Both the messageψ(t) and update functionϕ(t) represent learnable differentiable functions
in the form of neural networks such as MLPs.

After an iteration of T message construction steps, the information in the hidden states
can be used for further downstream tasks such as node/graph classification or edge
prediction through some readout step.

In the case of graph-level predictions yielding the predictor ŷn (such as the energy of a
structure) we can interpret the readout step as another learnable aggregation function R
of the feature vectors h(T )

i for the final layer T over the entire graph:

ŷ = R({h(T )
i , i ∈ V}) (3.13)

This global-pooling layer has to also be permutation invariant (i.e include operations such
as element-wise sums or mean) since permuting the ordering of graph nodes and edges
should not alter the final prediction.

Since MPNNs construct their message functions from messages received from their im-
mediate neighbours, a t-layer MPNN scheme is in principle able to represent a t-hop

4Can represent the element-wise sum or mean for example
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framework (i.e is able to communicate with nodes that are t hops away). However, due
to GNNs oversmoothing and oversquashing characteristics, this long-range capturing of
information is often not observed in practice.
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2) Interaction and Aggregation
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m
(1)
i

<latexit sha1_base64="YFZbhKKMHo8nI/k5lG/bZGdeIOE=">AAAB+3icdVDLSsNAFJ3UV62vWJduBotQNyFp0mp3RTcuK9hWaGOZTCft0MmDmYlYQn7FjQtF3Poj7vwbJ20FFT0wcDjnXu6Z48WMCmmaH1phZXVtfaO4Wdra3tnd0/fLXRElHJMOjljEbzwkCKMh6UgqGbmJOUGBx0jPm17kfu+OcEGj8FrOYuIGaBxSn2IklTTUy4MAyYnnp0E2nN6mVeskG+oV0zAdp1lrQNOw61bTcXJSsy3bhpZhzlEBS7SH+vtgFOEkIKHEDAnRt8xYuinikmJGstIgESRGeIrGpK9oiAIi3HSePYPHShlBP+LqhRLO1e8bKQqEmAWemsyTit9eLv7l9RPpn7kpDeNEkhAvDvkJgzKCeRFwRDnBks0UQZhTlRXiCeIIS1VXSZXw9VP4P+nWDKth1K+cSut8WUcRHIIjUAUWOAUtcAnaoAMwuAcP4Ak8a5n2qL1or4vRgrbcOQA/oL19AhjwlIA=</latexit>

m
(1)
k

<latexit sha1_base64="35MVEbBl3/6iqe5XceH7twPtBlM=">AAAB+3icdVDLSsNAFJ3UV62vWpduBotQNyFp02p3RTcuK9gHtDFMppN27OTBzEQsIb/ixoUibv0Rd/6Nk7aCih4YOJxzL/fMcSNGhTSMDy23srq2vpHfLGxt7+zuFfdLXRHGHJMODlnI+y4ShNGAdCSVjPQjTpDvMtJzpxeZ37sjXNAwuJaziNg+GgfUoxhJJTnF0tBHcuJ6iZ86tzdJxTxJnWLZ0A3LalYb0NBrdbNpWRmp1sxaDZq6MUcZLNF2iu/DUYhjnwQSMyTEwDQiaSeIS4oZSQvDWJAI4Skak4GiAfKJsJN59hQeK2UEvZCrF0g4V79vJMgXYua7ajJLKn57mfiXN4ild2YnNIhiSQK8OOTFDMoQZkXAEeUESzZTBGFOVVaIJ4gjLFVdBVXC10/h/6Rb1c2GXr+yyq3zZR15cAiOQAWY4BS0wCVogw7A4B48gCfwrKXao/aivS5Gc9py5wD8gPb2CRdmlH8=</latexit>

m
(1)
j

<latexit sha1_base64="Cqjs8byGY/ftDOihutK6sJI+2sQ=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQNyURX8uiG5cV7APaGCbTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G6WV1bX1jfJmZWt7Z3fP3K92ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOtPbnK/+0iEpBG/V9OYuCEacRpQjJSWPLM6CJEa+0E6zrzJQ1p3TjLPrNkNewZrmTgFqUGBlmd+DYYRTkLCFWZIyr5jx8pNkVAUM5JVBokkMcITNCJ9TTkKiXTTWfbMOtbK0AoioR9X1kz9vZGiUMpp6OvJPKlc9HLxP6+fqODKTSmPE0U4nh8KEmapyMqLsIZUEKzYVBOEBdVZLTxGAmGl66roEpzFLy+TzmnDuWic353VmtdFHWU4hCOogwOX0IRbaEEbMDzBM7zCm5EZL8a78TEfLRnFzgH8gfH5A7FVlDk=</latexit>

h
(1)
k

<latexit sha1_base64="3Wx2R7T2i1GUCHi8UI3/cR7tjAU=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQNyURX8uiG5cV7APaGCbTSTs6mYSZiVhCfsWNC0Xc+iPu/BsnbRbaemDgcM693DPHjxmVyra/jdLS8srqWnm9srG5tb1j7lY7MkoEJm0csUj0fCQJo5y0FVWM9GJBUOgz0vUfrnK/+0iEpBG/VZOYuCEacRpQjJSWPLM6CJEa+0E6zrz7u7TuHGWeWbMb9hTWInEKUoMCLc/8GgwjnISEK8yQlH3HjpWbIqEoZiSrDBJJYoQf0Ij0NeUoJNJNp9kz61ArQyuIhH5cWVP190aKQiknoa8n86Ry3svF/7x+ooILN6U8ThTheHYoSJilIisvwhpSQbBiE00QFlRntfAYCYSVrquiS3Dmv7xIOscN56xxenNSa14WdZRhHw6gDg6cQxOuoQVtwPAEz/AKb0ZmvBjvxsdstGQUO3vwB8bnD6/LlDg=</latexit>

h
(1)
j

<latexit sha1_base64="jIfZIL7ztFnv4TYx1byw3rKgCEA=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQNyURX8uiG5cV7APaGCbTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G6WV1bX1jfJmZWt7Z3fP3K92ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOtPbnK/+0iEpBG/V9OYuCEacRpQjJSWPLM6CJEa+0E6zjz6kNadk8wza3bDnsFaJk5BalCg5Zlfg2GEk5BwhRmSsu/YsXJTJBTFjGSVQSJJjPAEjUhfU45CIt10lj2zjrUytIJI6MeVNVN/b6QolHIa+noyTyoXvVz8z+snKrhyU8rjRBGO54eChFkqsvIirCEVBCs21QRhQXVWC4+RQFjpuiq6BGfxy8ukc9pwLhrnd2e15nVRRxkO4Qjq4MAlNOEWWtAGDE/wDK/wZmTGi/FufMxHS0axcwB/YHz+AK5BlDc=</latexit>

h
(1)
i

<latexit sha1_base64="RSRsjogLUKs4XdtoRTEtTwm8Epk=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyxC3ZREfC3rC1xWaNpCG8tkOmmHTh7M3IglBDf+ihsXirj1K9z5N07bLLT1wIXDOfdy7z1uxJkE0/zWcnPzC4tL+eXCyura+oa+uVWXYSwItUnIQ9F0saScBdQGBpw2I0Gx73LacAeXI79xT4VkYVCDYUQdH/cC5jGCQUkdfce7S0rWQdpJ2kAfQJLErl6d167TtKMXzbI5hjFLrIwUUYZqR/9qd0MS+zQAwrGULcuMwEmwAEY4TQvtWNIIkwHu0ZaiAfapdJLxC6mxr5Su4YVCVQDGWP09kWBfyqHvqk4fQ19OeyPxP68Vg3fmJCyIYqABmSzyYm5AaIzyMLpMUAJ8qAgmgqlbDdLHAhNQqRVUCNb0y7Okfli2TsrHt0fFykUWRx7toj1UQhY6RRV0g6rIRgQ9omf0it60J+1Fe9c+Jq05LZvZRn+gff4AohKW9g==</latexit>

f
(1)
UPDATE

<latexit sha1_base64="RSRsjogLUKs4XdtoRTEtTwm8Epk=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyxC3ZREfC3rC1xWaNpCG8tkOmmHTh7M3IglBDf+ihsXirj1K9z5N07bLLT1wIXDOfdy7z1uxJkE0/zWcnPzC4tL+eXCyura+oa+uVWXYSwItUnIQ9F0saScBdQGBpw2I0Gx73LacAeXI79xT4VkYVCDYUQdH/cC5jGCQUkdfce7S0rWQdpJ2kAfQJLErl6d167TtKMXzbI5hjFLrIwUUYZqR/9qd0MS+zQAwrGULcuMwEmwAEY4TQvtWNIIkwHu0ZaiAfapdJLxC6mxr5Su4YVCVQDGWP09kWBfyqHvqk4fQ19OeyPxP68Vg3fmJCyIYqABmSzyYm5AaIzyMLpMUAJ8qAgmgqlbDdLHAhNQqRVUCNb0y7Okfli2TsrHt0fFykUWRx7toj1UQhY6RRV0g6rIRgQ9omf0it60J+1Fe9c+Jq05LZvZRn+gff4AohKW9g==</latexit>

f
(1)
UPDATE

<latexit sha1_base64="RSRsjogLUKs4XdtoRTEtTwm8Epk=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyxC3ZREfC3rC1xWaNpCG8tkOmmHTh7M3IglBDf+ihsXirj1K9z5N07bLLT1wIXDOfdy7z1uxJkE0/zWcnPzC4tL+eXCyura+oa+uVWXYSwItUnIQ9F0saScBdQGBpw2I0Gx73LacAeXI79xT4VkYVCDYUQdH/cC5jGCQUkdfce7S0rWQdpJ2kAfQJLErl6d167TtKMXzbI5hjFLrIwUUYZqR/9qd0MS+zQAwrGULcuMwEmwAEY4TQvtWNIIkwHu0ZaiAfapdJLxC6mxr5Su4YVCVQDGWP09kWBfyqHvqk4fQ19OeyPxP68Vg3fmJCyIYqABmSzyYm5AaIzyMLpMUAJ8qAgmgqlbDdLHAhNQqRVUCNb0y7Okfli2TsrHt0fFykUWRx7toj1UQhY6RRV0g6rIRgQ9omf0it60J+1Fe9c+Jq05LZvZRn+gff4AohKW9g==</latexit>

f
(1)
UPDATE

3) Update

<latexit sha1_base64="5mVyaN9aSyG/XmVzcgPyZlniwxc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5oHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfRGvXLFrbozkL/Ey0kFctR75c9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TIKn0SxsqWNGSm/pzIaKT1OApsZ0TNUC96U/E/r5Oa8NLPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3z5L2meVL3z6tntaaV2lcdRhAM4hGPw4AJqcAN1aACDATzBC7w6wnl23pz3eWvByWf24Recj285JI3G</latexit>

Zk

<latexit sha1_base64="G8/pR9sI0eZgbOJNGBTvgoYNAhY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5oHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xs2HI3E</latexit>

Zi

<latexit sha1_base64="2O21mavgCZzTu/JbvBhbGi7BotE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0eM8oiwIbPDACOzs5uZXhOy4RO8eNAYr36RN//GAfagYCWdVKq6090VxFIYdN1vJ7e0vLK6ll8vbGxube8Ud/fqJko04zUWyUg3A2q4FIrXUKDkzVhzGgaSN4Lh9cRvPHFtRKTucRRzP6R9JXqCUbTS3UPnsVMsuWV3CrJIvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSjwvtxPCYsiHt85aliobc+On01DE5skqX9CJtSyGZqr8nUhoaMwoD2xlSHJh5byL+57US7F36qVBxglyx2aJeIglGZPI36QrNGcqRJZRpYW8lbEA1ZWjTKdgQvPmXF0n9pOydl89uT0uVqyyOPBzAIRyDBxdQgRuoQg0Y9OEZXuHNkc6L8+58zFpzTjazD3/gfP4AN6CNxQ==</latexit>

Zj

<latexit sha1_base64="Ak5myeEegguZcn6090KM7L6vCDE=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQNyURX8uiG5cV7APaGCbTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G6WV1bX1jfJmZWt7Z3fP3K92ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOtPbnK/+0iEpBG/V9OYuCEacRpQjJSWPLM6CJEa+0E6zjz6kNbtk8wza3bDnsFaJk5BalCg5Zlfg2GEk5BwhRmSsu/YsXJTJBTFjGSVQSJJjPAEjUhfU45CIt10lj2zjrUytIJI6MeVNVN/b6QolHIa+noyTyoXvVz8z+snKrhyU8rjRBGO54eChFkqsvIirCEVBCs21QRhQXVWC4+RQFjpuiq6BGfxy8ukc9pwLhrnd2e15nVRRxkO4Qjq4MAlNOEWWtAGDE/wDK/wZmTGi/FufMxHS0axcwB/YHz+AKy7lDY=</latexit>

h
(0)
i

<latexit sha1_base64="08KpPZDyniTYm6V2lYfgrlOxOrY=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQNyURX8uiG5cV7APaGCbTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G6WV1bX1jfJmZWt7Z3fP3K92ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOtPbnK/+0iEpBG/V9OYuCEacRpQjJSWPLM6CJEa+0E6zrzJQ1q3TzLPrNkNewZrmTgFqUGBlmd+DYYRTkLCFWZIyr5jx8pNkVAUM5JVBokkMcITNCJ9TTkKiXTTWfbMOtbK0AoioR9X1kz9vZGiUMpp6OvJPKlc9HLxP6+fqODKTSmPE0U4nh8KEmapyMqLsIZUEKzYVBOEBdVZLTxGAmGl66roEpzFLy+TzmnDuWic353VmtdFHWU4hCOogwOX0IRbaEEbMDzBM7zCm5EZL8a78TEfLRnFzgH8gfH5A6/PlDg=</latexit>

h
(0)
k

<latexit sha1_base64="nKyxeJXk3nAocZugjoPD/DIfX2c=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWom5KIr2WpCG6ECvaBbQiT6aQdOpmEmRsxhPorblwo4tYPceffOH0stPXAhcM593LvPX7MmQLb/jZyS8srq2v59cLG5tb2jrm711RRIgltkIhHsu1jRTkTtAEMOG3HkuLQ57TlDy/HfuuBSsUicQdpTN0Q9wULGMGgJc8sBl4X6CMokl3d1Eble2945Jklu2JPYC0SZ0ZKaIa6Z351exFJQiqAcKxUx7FjcDMsgRFOR4VuomiMyRD3aUdTgUOq3Gxy/Mg61ErPCiKpS4A1UX9PZDhUKg193RliGKh5byz+53USCC7cjIk4ASrIdFGQcAsia5yE1WOSEuCpJphIpm+1yABLTEDnVdAhOPMvL5LmccU5q5zenpSqtVkcebSPDlAZOegcVdE1qqMGIihFz+gVvRlPxovxbnxMW3PGbKaI/sD4/AEgmJRw</latexit>

fEMB(Zk)

<latexit sha1_base64="n+g3s1xTyx8NelX3PODvWLL6qW0=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWom5KIr2WpCG6ECvaBbQiT6aQdO5mEmRuxhPorblwo4tYPceffOG2z0OqBC4dz7uXee/yYMwW2/WXkFhaXllfyq4W19Y3NLXN7p6miRBLaIBGPZNvHinImaAMYcNqOJcWhz2nLH55P/NY9lYpF4gZGMXVD3BcsYASDljyzGHhdoA+gSHpxVRuXb727A88s2RV7CusvcTJSQhnqnvnZ7UUkCakAwrFSHceOwU2xBEY4HRe6iaIxJkPcpx1NBQ6pctPp8WNrXys9K4ikLgHWVP05keJQqVHo684Qw0DNexPxP6+TQHDmpkzECVBBZouChFsQWZMkrB6TlAAfaYKJZPpWiwywxAR0XgUdgjP/8l/SPKw4J5Xj66NStZbFkUe7aA+VkYNOURVdojpqIIJG6Am9oFfj0Xg23oz3WWvOyGaK6BeMj28fE5Rv</latexit>

fEMB(Zj)

<latexit sha1_base64="ttU1OGLvEm254eiApqZS2FWBvAA=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWom5KIr2WpCG6ECvaBbQiT6aQdOpmEmRsxhPorblwo4tYPceffOH0stPXAhcM593LvPX7MmQLb/jZyS8srq2v59cLG5tb2jrm711RRIgltkIhHsu1jRTkTtAEMOG3HkuLQ57TlDy/HfuuBSsUicQdpTN0Q9wULGMGgJc8sBl4X6CMokl3d1Eble48deWbJrtgTWIvEmZESmqHumV/dXkSSkAogHCvVcewY3AxLYITTUaGbKBpjMsR92tFU4JAqN5scP7IOtdKzgkjqEmBN1N8TGQ6VSkNfd4YYBmreG4v/eZ0Eggs3YyJOgAoyXRQk3ILIGidh9ZikBHiqCSaS6VstMsASE9B5FXQIzvzLi6R5XHHOKqe3J6VqbRZHHu2jA1RGDjpHVXSN6qiBCErRM3pFb8aT8WK8Gx/T1pwxmymiPzA+fwAdjpRu</latexit>

fEMB(Zi)

<latexit sha1_base64="6Gpu4aNnpDBHnLdkDhlQBfp/wy8=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQNyURX8uiG5cV7APaGCbTSTs6mYSZiVhCfsWNC0Xc+iPu/BsnbRbaemDgcM693DPHjxmVyra/jdLS8srqWnm9srG5tb1j7lY7MkoEJm0csUj0fCQJo5y0FVWM9GJBUOgz0vUfrnK/+0iEpBG/VZOYuCEacRpQjJSWPLM6CJEa+0E6zrz7u7RuH2WeWbMb9hTWInEKUoMCLc/8GgwjnISEK8yQlH3HjpWbIqEoZiSrDBJJYoQf0Ij0NeUoJNJNp9kz61ArQyuIhH5cWVP190aKQiknoa8n86Ry3svF/7x+ooILN6U8ThTheHYoSJilIisvwhpSQbBiE00QFlRntfAYCYSVrquiS3Dmv7xIOscN56xxenNSa14WdZRhHw6gDg6cQxOuoQVtwPAEz/AKb0ZmvBjvxsdstGQUO3vwB8bnD65FlDc=</latexit>

h
(0)
j

<latexit sha1_base64="ilY/QkTkYupHlTufaTNlJZ/WxVI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dI5JHAhswOvTAwO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HofuY3n1BpHstHM07Qj2hf8pAzaqxUG3aLJbfszkFWiZeREmSodotfnV7M0gilYYJq3fbcxPgTqgxnAqeFTqoxoWxE+9i2VNIItT+ZHzolZ1bpkTBWtqQhc/X3xIRGWo+jwHZG1Az0sjcT//PaqQlv/QmXSWpQssWiMBXExGT2NelxhcyIsSWUKW5vJWxAFWXGZlOwIXjLL6+SxkXZuy5f1S5LlbssjjycwCmcgwc3UIEHqEIdGCA8wyu8OUPnxXl3PhatOSebOYY/cD5/ANRBjPg=</latexit>

j
<latexit sha1_base64="d/RhcRSMbEv4ivpbAndL8To6sfA=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVR71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvqnJZvyhXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MH1cWM+Q==</latexit>

k

<latexit sha1_base64="+iA735F8IicH/wr4EQv6NPT53YM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVea9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzWL8rV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwB0r2M9w==</latexit>

i
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Repeat

Figure 3.1: Illustration of the neural message-passing scheme [11]

Within the MPNN formalism, other common forms of machine learning layers such as
convolutional and self-attention can be obtained.

For a convolutional layer, we use fixed weights for the edges aij between nodes i and j in
the aggregation scheme. The node features of the neural network (or hidden state) hi are
updated using:

hi = ϕ


hi,

⊕

j∈Ni

aijψ(hj)


 (3.14)

We recover the convolutional GNNs from MPNNs (compare with eq. (3.12)) by restricting
the messages ψ to be constructed only from the features of the local node (and not
including neighbouring node features hj of its connecting edge features eij) with a fixed
edge weight ψ(hi,hj) = aijψ(hj)

In the self-attention layer, the interactions are not static but are obtained implicity from
the interaction between node i and j through a learnable self-attention coefficient eij =
e(hi,hj) resulting in the hidden state:

hi = ϕ


hi,

⊕

j∈Ni

a(hi,hj)ψ(hj)


 (3.15)

The connection to MPNNs can be established via ψ(hi,hj) = a(hi,hj)ψ(hj)
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Figure 3.2: Directional Message Passing as introduced in DimeNet [34]. Note the aggrega-
tion away from the local site i, where all the node indices k are part of the neighbourhood
N (i).

Evidently we have the following representational containment convolution ⊆ attention ⊆
message-passing since convolutional layers further correspond to an attentional layer with
a(hi,hj) being fixed.

3.4 Cartesian-invariant MLFFs (ℓ = 0)

Invariant GNN layers aggregate scalar quantities from local neighbourhoods N (i) via
scalarising the geometric information V⃗:

s
(t+1)
i = f

(0)
UPD

(
s
(t)
i , f

(0)
AGG(s

(t)
i , s

(t)
j , v⃗

(t)
i , v⃗

(t)
j , eij)

)
(3.16)

For e.g. SchNet[14] uses relative distances between the nodes ∥rij∥ = |rj − ri| as edge
features eij to scalarise local geometric information

s
(t+1)
i = f

(0)
UPD

(
s
(t)
i , f

(0)
AGG(s

(t)
j , ∥⃗rij∥)

)
= s

(t)
i +

∑

j∈N (i)

f
(0)
AGG(s

(t)
j , ∥⃗rij∥) (3.17)

Concretely in the aggregation and interaction step, the edge features embedded using a
radial expansion are used to obtain a filter weight W (t)

ij determined by an MLP to inform
the weight of each node scalar feature in the sum, i.e sj ⊙W

(t)
ij .

This corresponds to a traditional message-passing scheme and as such we have body
order 2 with complexity of O(nk) where n is the number of nodes and k the average
‘connectivity‘ or degree5.

5referring to the average number of bonds each atom in the structure forms
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DimeNet [34] considers three-body interactions through angles rij · rik among triplets, as
follows:

s
(t+1)
i =

∑

j∈N (i)

f
(0)
UPD

(
s
(t)
i , s

(t)
j ,

∑

k∈N (i)\{j}

f
(0)
AGG

(
s
(t)
j , s

(t)
k , ∥⃗rij∥, r⃗ij · r⃗ik

))
(3.18)

The updated scalar features are both E(3) and translation invariant as the only geometric
information used is the relative distances and angles, both of which remain unchanged
under the action of E(3) or translations.

3.4.1 M3GNet

In contrast to the other models we discuss, M3GNet [33] (Materials 3-body Graph Net-
work) was built specifically for crystal structures[33]. It makes use of the multi-edge
crystal graph representation (or crystal graph convolutional neural networks (CGCNN))
specifically designed for periodic crystal systems flattened as a line graph to encode the
original edges to node features and angles between edges as edge features[17].

Similar to geometric graphs, a materials graph G = (V, E ,C, [M,u]) includes node infor-
mation vi ∈ V , edge features eij ∈ E and geometric information such as atomic positions
ri ∈ C⃗. As geometric features, we now have the optional global state information u and
3× 3 lattice matrix M6.

Embedding

The graph structure is passed to a graph featurizer that embeds the pair atom distance rij
up to a certain cut-off rc to basis functions and the atomic number Zi to element feature
spaces. The element embedding converts the chemical elements into a node feature v

(0)
i

of dimension 64. The bond distances are expanded using continuous and smooth basis
functions which ensure that the first and second order derivatives vanish at the cut-off
radius,

e
(0)
RBF,n(∥r∥) =

1√
dn

[
fn(r) +

√
gn
dn−1

en−1(r)

]
with dn = 1− gn

dn−1
(3.19)

where

fn(r) = (−1)n
√
2π

r
3/2
c

(n+ 1)(n+ 2)√
(n+ 1)2 + (n+ 2)2

(
sinc

(
r
(n+ 1)π

rc

)
+ sinc

(
r
(n+ 2)π

rc

))

(3.20)
The initial bond e

(0)
ij is then a vector formed by these basis functions e(0)RBF,n with n ∈

[0, NRBF].

6These geometric coordinates are important to compute the forces and the lattice matrix as well as
geometric coordinates are necessary for the computation of stresses.
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Many-Body Computation

This module calculates the three-body interaction indices and their associated angles.
There is essentially no change in node and edge features but simply a reformatting of the
data. It uses the pairwise edge indices to create an index vector containing all three linked
nodes with their associated angle. For example, if we have the pairwise edge connections
(0,1), (0,2)), we would construct an index vector entry (0,1,2) which includes the associated
three-body angle θ102.

Main Block

This corresponds to the interaction block and consists of two steps, namely the many-body
to bond module and standard graph convolutions.

The many-body to bond step computes the new bond information eij by considering the
full-bonding environment N (i) of atom i with many-body angles θijk and bond length
rij and rik. This is quite similar to the DimeNet framework, consisting of the following
inputs for the aggregation message step:

m
(t)
ij =

∑

k∈N (i)\{j}

f
(0)
AGG

(
s
(t)
j , s

(t)
k , ∥⃗rij∥, r⃗ij · r⃗ik

)
(3.21)

The explicit construction for the many-body to bond step in M3GNet is given by:

ẽ
(t)
ij =

∑

k∈N (i)

Jl

(
zln

rik
rc

)
Y 0
l (θijk)⊙ σ(Wvvk + bv)fc(∥rij∥)fc(∥rik∥) (3.22)

where Jl are the spherical Bessel functions with the roots at zln, Y m
l is the spherical

harmonics function, σ is the standard sigmoid activation function. The first part corre-
sponds to a joint 2D basis for the interatomic distances and angles represented using the
Fourier-Bessel basis: a(ki,ij)SBF ∈ RNSHBF·NSRBF and is defined as

a
(l,n)
SBF (rik, θ) =

√
2

r3cJ
2
l+1(zln)

Jl

(
zln

rik
rc

)
Y m=0
l (θ) (3.23)

The cutoff function in equation (3.22):

fc(r) = 1− 6

(
r

rc

)5

+ 15

(
r

rc

)4

− 10

(
r

rc

)3

(3.24)

ensures that the functions smoothly at the boundary, rc since the Fourier-Bessel func-
tions are not smoothly second-order differentiable there. We can see the above as the
Neural Network learning to weigh each independent component l of the vector eij using
the hidden state of the atom i and the relative distances through the componentwise
multiplication.
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Let g denote the non-linear activation function g(x) = xσ(x), then the bond update for
M3GNet is given by:

e
(t+1)
ij = fUPD(e

(t)
ij , ẽ

(t)
ij ) = e

(t)
ij + g(W2ẽ

(t)
ij + b2)⊙ σ(W1ẽ

(t)
ij + b1) (3.25)

where all weights W and b appearing in (3.22) and (3.25) are learnable parameters in
an MLP. Then using standard graph convolutions the internal state, bond information
and optionally the global information are processed. The bond information is updated
according to

e
(t+1)
ij = e

(t+1)
ij + ϕ(v

(t)
i ⊕ v

(t)
j ⊕ e

(t)
ij ⊕ u(t))W(0)e

(0)
ij (3.26)

where ϕ(x) represents a gated MLP taking as input x the concatenated vectors consisting
of node features vi and vj , edge information eij calculated in (3.25) and the optional
global state u. A K-layer gated MLP can be represented as

ϕK(x) =
((
LK
g ◦ LK−1

g ◦ . . . L1
g

)
(x)
)
⊙
((
LK
σ ◦ LK−1

g ◦ . . . L1
g

)
(x)
)

(3.27)

where Lk
g : x 7→ Φ (Wkx+ bk) is a single layer perceptron. The network on the left-hand

side of (3.27) represents the normal network, where each output at the final layer K is
element-wise ⊙ multiplied by the node outputs from the gated MLP represented on the
right-hand side of (3.27).

The internal node features are obtained by using the edge features in equation (3.26)
and summing over j ∈ N (i) in analogy to the message aggregation step

∑
j m

(t+1)
ji for

MPNNs:
v
(t+1)
i = v

(t+1)
i +

∑

j

ϕ′(v
(t)
i ⊕ v

(t)
j ⊕ e

(t)
ij ⊕ u(t))W′(0)e

(0)
ij (3.28)

Out of the box, M3GNet initializes the gated MLPs in the graph convolution step to have
two layers with 64 neurons in each layer.

After multiple such graph convolutions a final three-layer gated MLP ϕ3(x) with neuron
configuration [64,64,1] and no activation function7 is used to predict the total energy.

3.5 Cartesian-equivariant MLFFs (ℓ = 1)

For MLFFS with ℓ = 1 we have to restrict updates and aggregations in the message
passing scheme to certain vector operations to ensure equivariance. Such operations
include scaling of vectors s⊙v (⊙ represents element-wise multiplication), summation of
vectors v1 + v2, linear transformation of vectors Wv, scalar products v1 · v2, norms ∥v∥
and vector products v1 × v2 [51] [28].

7Only in the last layer for the normal part of the gated MLP, the gated part still has an activation function
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Cartesian-equivariant MLFFs propagate and update both scalar and vector message in-
formation with vector operations constrained to the example mentioned above:

m
(t)
i =

∑

j∈N (i)

f
(0)
AGG(s

(t)
i , s

(t)
j , v⃗

(t)
i , v⃗

(t)
j , eij)

m⃗
(t)
i =

∑

j∈N (i)

f
(1)
AGG(s

(t)
i , s

(t)
j , v⃗

(t)
i , v⃗

(t)
j , eij)

s
(t+1)
i =

∑

j∈N (i)

f
(0)
UPD({s

(t)
i ,v

(t)
i }, {m(t)

i ,m
(t)
i })

v⃗
(t+1)
i =

∑

j∈N (i)

f
(1)
UPD({s

(t)
i ,v

(t)
i }, {m(t)

i ,m
(t)
i })

(3.29)

For example, PaiNN [28] has interaction layers that aggregate scalar and vector features
via a learned radial filter conditioned on the relative distance. It augments the invariant
SchNet into equivariant flavor by projecting the interatomic distances via radial basis
functions (corresponding to a linear transformation) and iteratively updating the vectors
along with the scalar features:

s
(t)
i = s

(t)
i +

∑

j∈N (i)

fAGG(s
(t)
j , ∥⃗rij∥)

v⃗
(t)
i = v⃗

(t)
i +

∑

j∈N (i)

f2(s
(t)
j , ∥v⃗ij∥ )⊙ v⃗

(t)
j +

∑

j∈N (i)

f3(s
(t)
j , ∥⃗rij∥ )⊙ r⃗ij

(3.30)

In the update step we apply a gated non-linearity on the vector features, which learns to
scale their magnitude using their norm concatenated with the scalar features [16]. So the
scalar and vector features are updated according to:

s
(t+1)
i = m

(t)
i + f4(m

(t)
i , ∥m⃗(t)

i ∥ )

v⃗
(t+1)
i = m

(t)
i + f5(m

(t)
i , ∥m⃗(t)

i )∥ ⊙m
(t)
i

(3.31)

The vector features exhibit both E(3) equivariance and translational invariance since the
aggregation and update operations solely involve vector scaling, vector summation, linear
transformations and scalar products, all of which are equivariance-preserving operations
on vectors mentioned at the start of this section. On the other hand, the scalar features si
remain invariant throughout the message-passing scheme, since we only rely on relative
distance information as our geometric information.

3.6 Spherical tensor equivariant MLFFs (ℓ ≥ 1)

A general overview of such spherical equivariant MLFFs models can be seen in Figure (3.3).
After an initial embedding of the scalar features of a graph such as the atomic numbers,
multiple interaction blocks follow, each described by a tensor-MPNN layer consisting of
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Figure 3.3: Architecture for spherical equivariant MLFFs. Figure taken from [51].

message construction, aggregation and update steps, which make use of tensor-products
and Clebsch-gordan coefficients to retain equivariance 8

3.6.1 Embedding block

The first block in most MLFFs is the chemical embedding block, in which the elements
Zi are one-hot encoded to vectors θ : {Zi} → Ra of lengths equal to the unique number
of elements a in the system. The initial features h

(0)
i for each atom i are obtained by

multiplying these one-hot embedding vectors θ with a learnable weight matrix W of size
Nelements ×Nchannels corresponding to a trainable self-interaction layer.

The node features after the initial embedding step can now, in addition to scalar s (ℓ = 0)
and vector features v⃗ (ℓ = 1), include higher-order feature vectors (lmax ≥ ℓ ≥ 2). Many
features for each rotation order can exist and are labelled by the channel index c ((i.e each
element in the feature vector), the atom i and the representation index m. We will denote
the features of node i by hℓicm or sometimes for brevity simply in vector notation hℓ

i .

8More precisely, to preserve equivariance across the entire message-passing scheme we will see that all
filters and layers need to inhabit representations of SO(3) that lead to outputs that are again equivariant. To
ensure this, all operations will be restricted to tensor-products and linear operations.
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3.6.2 Interaction block

Self-interaction

At the start of each message-construction and after the initial embedding among others
(see Figure (3.4)), for Nequip and TFN linear operations on the node features hℓ

i are
performed. These are inspired by SCHNet and are also employed in TFN’s and mix
components of the feature vectors for each atom i in a learnable way through a weight
matrix W:

W (hℓ) =
∑

c′

W ℓ
cc′h

ℓ
ic′m (3.32)

To enforce equivariance, the weights are constant for every m for a given rotation order ℓ.

Message-construction

This tensor-based message passing scheme first computes a message mℓ3
i ∈ R2ℓ3+1

through the aggregation over pairwise messages from neighboring nodes through a
tensor-product operation TPℓ3

ℓ1,ℓ2
:

m
(ℓ3,t)
i =

∑

j∈N (i)

m
(ℓ3,t)
j→i =

∑

j∈N (i)

TPℓ3
ℓ1,ℓ2

(ri − rj ,h
(ℓ1,t)
j ) (3.33)

where N (i) denotes the neighboring set of nodes j smaller than some cutoff radius
hyperparamter rc, i.e N (i) = {j : ∥ri − rj∥2 ≤ rc}.

Both Nequip and TFN employ sum aggregation but of course alternatives exists. For
example the more recent, Equiformer (2023) [48] additionally weighs each message by
attention.

Interaction

The TP operation in the message construction (3.33), crucially, makes use of the spherical
harmonics (recall that these functions are SO(3) equivariant, see equation (3.9)). Both
Nequip and Tensor-Field Networks employ rotation-equivariant pointwise-convolution
filters F

F ℓ2,ℓ1
cm (r) = Rℓ2,ℓ1

c (r)Y ℓ2
m (r̂) (3.34)

composed of spherical harmonics Y ℓ2
m with rotation order ℓ2 and magnetic number

m = −ℓ2,−ℓ2 + 1, . . . , ℓ2, that featurize the direction and a learnable radial function
R, represented as an MLP:

R(rij) = WnΦ(. . .Φ(W2Φ(W1B(rij)))) (3.35)

that featurizes the relative distance rij between nodes9. Here Φ denotes the activation
function, W the learnable weight matrices and B(rij) a basis embedding.

9Typically one uses three-layers in the MLP
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For Nequip the non-linear activation functions for the radial MLP are SiLU activation
functions

SiLU(x) =
x

1 + e−x
(3.36)

and the initial radial embedding B(rij) is given by Radial Bessel functions

B(rij) =
2

rc

sin
(
nπ
rc
rij

)

rij
fenv(rij , rc) (3.37)

The envelope polynomials fenv are the same as in DimeNet and satisfy limrij→0 fenv(rij , rcut) →
0 [34].

The index c in equation (3.34) refers to the channel index and denotes the multiple instances
of each l-rotation order irreducible representations. What this concretely represents will
become evident when we discuss the Clebsch-Gordan coefficients.

Because the radial functions only depend on the relative distance between nodes, the
scalar outputs of the learnable functions are therefore rotation invariant, these filters
are rotation-equivariant since they borrow their rotational properties from the spherical
harmonics.

The tensor-product interaction in (3.33) now employs these filters F , using ℓ2-order spher-
ical harmonics functions as the kernel, to compute the messages m(ℓ3,t)

j→i propagated from
every node j in N (i) to the node i. Let ⊗ represents the outer-product operation, i.e.
a ⊗ b = abT and vec(·) the operation that flattens a matrix to a vector, then the layer
interaction is given by:

TPℓ3
ℓ1,ℓ2

[
ri − rj ,h

(ℓ1,t)
j

]
= Cℓ3

(ℓ1,ℓ2)
vec

(
R(rij)Yℓ2(r̂ij)⊗ h

(ℓ1,t)
j

)
(3.38)

which explicitly written out yields the following layer definition Lℓ3
icm3

(ri − rj , h
ℓ1
icm1

):

TPℓ3
ℓ1,ℓ2

[
ri − rj ,h

(ℓ1,t)
j

]
=
∑

m2,m1

C
(ℓ3,m3)
(ℓ2m2)(ℓ1m1)

∑

j∈Ni

F ℓ2,ℓ1
cm2

(rij)h
ℓ1
jcm1

(3.39)

where the indices 1, 2, 3 refer to the input, filter and output indices respectively and Cℓ3
ℓ1,ℓ2

is the Clebsh-Gordan matrix with (2ℓ3 + 1) rows and (2ℓ1 + 1) × (2ℓ2 + 1) columns. For
a general tensor-product between two vectors u(ℓ1) and v(ℓ2) with rotation order ℓ1 and ℓ2
respectively

hℓ3m3
= (u(ℓ1) ⊗ v(ℓ2))m3 =

ℓ1∑

m1=−ℓ1

ℓ2∑

m2=−ℓ2

C
(ℓ3,m3)
(ℓ1,m1),(ℓ2,m2)

u(ℓ1)m1
v(ℓ2)m2

(3.40)

the Clebsch-Gordan coefficients indicate which coupling between different m and ℓ for
the input node features and filters are possible10. To acquire non-zero Clebsch-Gordan

10This is in analogy to the addition of angular momenta in quantum mechanics. Clebsch-Gordan coeffi-
cients allow us to express the "total angular momentum" basis |ℓ3,m3; ℓ1, ℓ2⟩ in terms of the direct product
basis |ℓ1, ℓ2;m1,m2⟩ = |ℓ1m1⟩ ⊗ |ℓ2m2⟩ through the simple expansion (inserting a projection operator)

The Clebsch-Gordan coefficient is given by ⟨ℓ1, ℓ2,m1,m2|ℓ3,m3, ℓ1, ℓ2⟩.
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coefficients, the rotation order ℓ3 for the resulting vector hℓ3 needs to lie between |ℓ1 − ℓ2|
and |ℓ1 + ℓ2| and in most models vectors with ℓ3 ≥ ℓmax, where ℓmax is a hyperparmeter,
are discarded 11.

The distinct combinations of ℓ1 ⊗ ℓ2 → ℓ3 can result in multiple output tensor for a given
output rotation order ℓ3 as a result of the different combinations of input ℓ1,m1 and filter
ℓ2,m2. We collect all such possible output tensors with ℓ3 ≤ ℓmax, classify them by the
channel index c, and concatenate them.

The Clebsch-Gordan coefficients for certain channels have very intuitive interpretations
with regard to what mathematical operation they are trying to model. For example, ℓ3 = 0
we obtain standard scalar and vector operations that yield scalars. These correspond to
the dot-product 1 ⊗ 1 → 0, where two vectors are contracted yielding a scalar denoted
by Clebsch-Gordan coefficient C(0,0)

(1,i)(1,j) ∝ δij and standard scalar-scalar multiplication
0⊗ 0 → 0. When ℓ3 = 1, we can obtain the combinations 1⊗ 1 → 1 representing the cross
product with

C
(1,i)
(1,j),(1,k) = ϵijk (3.41)

where ϵijk represents the Levi-Civita symbol and 1 ⊗ 0 → 1 and 0 ⊗ 1 → 1 which
corresponds to simply scalar multiplication of a vector. As detailed in the beginning
of Section (3.5) all these operations adhere to the principles of equivariance, meaning
each channel of hℓ3m3

, such as scalar, vector and higher-order features corresponding to
ℓ = 0, 1, 2, preserves its own independent equivariance. This can be summarized generally
by the following condition of tensor-products12:

TPℓ3
ℓ1ℓ2

[
R(g)ri −R(g)rj , D

ℓ1(R)h
(ℓ1,t)
i

]
= Dℓ3(R)TPℓ3

ℓ1,ℓ2

[
ri − rj ,h

(ℓ1,t)
i

]
(3.42)

As such stacking multiple such message-passing layers based on tensor-products pre-
serves equivariance over the interaction part of the network.

Update

The tensor-based MPNN finishes by updating the hidden stateh(ℓ1,t)
i to new node features

h
(ℓ1,t+1)
i using the aggregated message, (3.33) according to

h
(ℓ1,t+1)
i = fUPD(h

(ℓ1,t)
i ,m

(ℓ3,t)
i ) (3.43)

where the node feature update function fUPD can contain linear or another TP operation.

In TFN’s the update function consist of the aggregation of the messages as in (3.33)
followed by another linear self-interaction part.

11If we restrict a Nequip model to only include 0× 0 → 0-type interactions we would retrieve an invariant
GNN model similar to SchNet

12It is important to mention that the representations of the group operations differ. In this context R(g)
signifies 3D rotation group operations and acts on the 3D coordinates of a geometric graph. Conversely,
Dℓ(R) represents the generalized rotations that act on the geometric features h of arbitrary dimension.
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Figure 3.4: Flowchart of the Nequip Architecture. Figure taken from [31].
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In Nequip a special type of self-interaction operation, absent in TFN’s, is computed after
each message-passing layer as part of the update step and is reminiscent of residual con-
nections common in convolutional neural networks. This learnable self-connection rein-
jects the embedded chemical information about the central atom θi and information from
the previous layer h

(t)
i to concatenate to the linearly transformed message-aggregation

result from TFN. We have

h
(ℓ3,t+1)
icm = h

(ℓ3,t+1)
icm +

∑

ac′

W ℓ3
cc′aθi,ah

(ℓ3,t)
ic′m (3.44)

whereWcc′ℓ3a is a learnable weight matrix of size [Nchannels ×Nchannels × ℓmax ×Nelements ]

Output Non-linearity

As the last step in the message-passing scheme an optional additional non-linearity σ
to the tensor-products can be employed. To preserve equivariance these non-linearity
functions need to however act as scalar transforms, i.e. g : R → R for each ℓ along the m
dimension. In Nequip we employ square-norm gated non-linearity of the form:

σ(h
ℓ3,t+1)
icm ) = g(∥h(ℓ3,t+1)

icm ∥ )h(ℓ3,t+1)
icm (3.45)

where g is the SiLU or tanh function.

3.6.3 Output Block

In summary, the nodes of spherical equivariant geometric graph neural networks given
by higher-order tensor features hi,l ∈ R(2l+1)×f with l = 0, . . . L are updated with ten-
sor products ⊗w consisting of a learnable radial function which takes scalar and vector
features with spherical harmonic expansion of displacement Y m1

l1
(r̂ij).

3.7 Higher-body order methods

The equivariant-methods discussed in the last section are only using two-body interactions
in their message-passing scheme. Higher-body order equivariant methods such as Mace
implement many-body interactions with neighbours. MACE takes inspiration from the
Atomic Cluster Expansion and the so-called ’density trick’.

3.7.1 Atomic Cluster Expansion (ACE)

The first step in Atomic Cluster Expansion [19] is to construct the single-bond basis using
spherical harmonics and radial function:

ϕcℓm(rij) = ⟨rij |c, ℓ,m⟩ = Rc(rij)Y
m
ℓ (r̂ij) (3.46)

For brevity in our expressions we introduce a multi-indexα = (c, ℓ,m) combining channel
c (corresponding to the principal quantum number n), rotation order ℓ (angular momen-
tum) and representation index m (magnetic number).
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These functions span a complete and orthonormal basis (depending only on the single
bond vector rij):

∫
ϕ∗α(rij)ϕβ(rij)dr = δαβ and

∑

α

ϕ∗α(rij)ϕα(r
′
ij) = δ(rij − r′ij) (3.47)

In the next step, similar to MPNN, we sum over the neighbours j in the surrounding N (i)
of the central atom i to reduce the two-particle basis to the atomic basis (for completeness
an additional index relating to the atomic species Zi

Aiα =
〈
ρZi
∣∣ϕα
〉
=
∑

j∈N (i)

ϕα(rij) (3.48)

This is the so-called density trick since we are projecting the one-particle basis onto the
neighbourhood density of atom i (with chemical element Z) given by

ρZi (r) =
∑

j

δZZjδ(r− rj) (3.49)

This atomic basis is permutation invariant and can in principle represent any function that
depends on all neighbours around N (i). However, it will only be composed of 2-body
functions and can therefore only model functions such as f(ri, rj) but not higher-order
multivariate functions such as f3 from equation (3.10).

To construct higher-body order functions, ACE constructs the atomic product basis, a
complete basis of permutation-invariant functions:

Aiα =

ν∏

ξ=1

Aiαξ
=

ν∏

ξ=1

∑

j∈N (i)

ϕαξ
(rij), α = (α1, α2, . . . αν) (3.50)

with ν corresponding to the correlation order. We note the similarities to the construction
of the cluster correlation function (2.23) for Cluster Expansion.

The product basis can then be used to represent the atomic energy via a body-order
expansion as such:

Ei =
∑

α

c(1)α Aiα +

α1≥α2∑

α1,α2

c(2)α1,α2
Aiα1Aiα2 +

α1≥α2≥α3∑

α1,α2,α3

cα1α2α3Aiα1Aiα2Aiα3 + . . . (3.51)

The advantage over using the traditional single-bond basis as a body-ordered expansion
of the atomic energy:

Ei =
∑

j,α

c(1)α ϕα(rij) +
1

2

j1 ̸=j2∑

j1,j2

∑

α1,α2

c(2)α1,α2
ϕα1(rij1)ϕα2(rij2) + . . . (3.52)

is that the expression (3.51) only scales as O(n) where n represents the number of neigh-
bours rather than exponentially O(nd) for (3.52). This is one of the profound advantages
of the ACE representation.
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3.7.2 MACE

MACE is based on a spherical equivariant message passing scheme. It however addition-
ally employs the ACE framework to construct higher body-order correlation functions
that are used in the message update step:

m
(t)
i =

∑

j∈N (i)

f
(1,t)
UPD(h

(t)
i ,h

(t)
j )+

∑

j1,j2∈N (i)

f
(2,t)
UPD(h

(t)
i ,h

(t)
j1
,h

(t)
j2
)+

· · ·+
∑

j1,...jν∈N (i)

f
(ν,t)
UPD(h

(t)
i ,h

(t)
j1
, . . . ,h

(t)
jν
)

(3.53)

The maximal correlation-order ν is a hyperparameter in MACE.

Now in MACE the bond-basis functions ϕ are used as the convolution filter F , to interact
with the internal node features via a tensor-product, where the contraction is again
dictated by the Clebsch-Gordan coefficients:

A
(ℓ3,t)
icm3

=
∑

ℓ1m1ℓ2m2

C
(ℓ3,m3)
(ℓ1m1),(ℓ2m2)

∑

j∈N (i)

R(t,ℓ1ℓ2)
c (rij)Y

m2
ℓ2

(r̂ij)
∑

k̃

W
(ℓ1,t)
cc̃ h

(ℓ1,t)
jc̃m1

(3.54)

The Clebsch-Gordan coefficients ensure that the A(ℓ3,t)
icm3

is equivariant 13. Notice the sim-
ilarities to the message construction in equation (3.39). In MACE the tensor product is
however formed between the convolution filter, taking the same form as in Nequip (see
equation (3.34)) and node features linearly transformed by a self-interaction operation
controlled by a learnable weight matrixW ℓ2

cc′ (i.e TP(F (·),W (hj)) instead of TP(F (·),hj)).

To get a ν-correlation order basis we could again consider the product basis:

A
(ℓ,t)
icm =

ν∏

ξ

A
(ℓξ,t)
icmξ

, ℓm = (ℓ1m1, . . . , ℓνmν) (3.55)

Although this product basis is permutation and translational invariant, it breaks the
rotational equivariance. As such we can’t use this to represent internal features since if
we want to retain an equivariant model each layers representation have to be equivariant.

In MACE these rotationally-equivariant higher-order basis functions are obtained by prop-
erly symmetrizing the product basis A via:

B
(L,t)
iηνcM

=
∑

ℓ,m

CL,M
ην ,ℓm

ν∏

ξ=1

∑

c′

W
(t)
cc′ℓξ

A
(t)
ic′ℓξmξ

, ℓm = (ℓ1m1, . . . , ℓνmν) (3.56)

where CL,M
ην ,ℓm

corresponds to the generalized Clebsch-Gordan coefficients given as the
product of Clebsch-Gordan coefficients:

CLM
ℓ1m1,...ℓνmν

= CL2M2
ℓ1m1,ℓ2m2

CL3M3
L2M2,ℓ3m3

. . . CLνMν
Lν−1Mν−1,ℓνmν

(3.57)

13If we were to model invariant features, we could omit the Clebsch-Gordan coefficients.
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that ensures our symmetrized product basis is equivariant to the output rotation order L.
The index ην enumerates the number of possible combinations of input rotation orders
ℓ1, . . . ℓν that yield the desired output rotation order L = (L2, . . . Lν). We see this by
noting that our values L2, . . . , Lν are restricted to |ℓ1 − ℓ2| ≤ L2 ≤ ℓ1+ ℓ2 and for all i ≥ 3,
|Li−1 − ℓ1| ≤ Li ≤ Li−1 + li.

We note that a self-interaction part with weight matrix W
(t,ℓξ)
cc′ to mix features A

(t)
i of

different channels c′ is also included in equation (3.56).

The fully symmetrized basis can now be used to construct the many-body message for each
atom by a linear combination of symmetrized basis features with different body-orders:

m
(L,t)
icM =

∑

ν,ην

W (L,t)
cην (θi)B

(L,t)
iηνc

(3.58)

Here W (L,t)
cην is a learnable weight matrix that embeds the chemical information of the

central atom i into the network through a linear operation similar to (3.44).

With those messages, we can then define the update step for our message-passing scheme.
Similar to Nequip, we have a residual connection to node features from the previous layer
combined with a linear-combination of a feature mixed aggregated message (3.58):

h
(L,t+1)
icM = fUPD(h

(L,t)
i ,m

(L,t)
i ) =

∑

c̃

W
(L,t)
cc′ m

(L,t)
icM +

∑

c̃

W
(L,t)
cc′ (θi)h

(L,t)
ic̃M (3.59)

Each feature term in the expansion (3.53) can be specified implicitly through the body
order chosen in the linear combination of B in (3.58).

The output of predicting the total energy consists of using the invariant features h(L=0,t)
icm=0

to compute the local energy Ei via a hierarchical decomposition by message-passing
iteration. For T such iterations we obtain

Ê =
∑

i

[
E

(0)
i +

T−1∑

t=1

∑

c

W (t)
c h

(0,t)
ic0 + MLP

(
{h(0,T )

ic0 }c
)]

(3.60)

The zeroth term E0
i corresponds to a fixed term solely determined by the atomic type

while the other layers T ≥ t ≥ 1 use a learnable node-feature transformation to the atomic
site energies.
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Results and Discussion

4.1 Motivation and Preliminaries

Although significant work has gone into the investigation of three-dimensional com-
pounds and the training of machine learning force fields, the exploration of the two-
dimensional chemical space remains largely untapped. This is in part because most
current two-dimensional datasets are substantially smaller, mostly focus on binary com-
pounds and also don’t contain enough diversity in stoichiometry to capture the variety
in the two-dimensional compound space, making it challenging to train and obtain a
universal two-dimensional machine learning force fields.

To address these issues, Wang. et al. [40] constructed a two-dimensional dataset to
find compounds using a systematic-symmetry based approach in combination with a
machine-learned universal force-field assisted geometry optimization. This framework
has led to finding an additional, 6500 binary and ternary two-dimensional stable com-
pounds previously not present in any other two-dimensional database and yielding a
dataset consisting of a total of 30 different stoichiometries of the formAnBm andAnBmCk

covering compounds made up of elements from across the entire periodic table (excluding
radioactive materials, At, Tc, Pr, Pm and rare gases He, Ne, Ar, Kr, Xe, Rn but notably
including the lanthanides).

After the initial search and a screening of viable compounds, a UFF (based on M3GNet)
was employed to pre-relax the structure. This pre-relaxation using UFFs is done for ef-
ficiency purposes, since a complete geometry optimization using DFT is laborious. This
pre-relaxation has the additional benefit of further removing unstable pre-relaxed struc-
ture (in their case, unstable compounds refers to relaxed structures with energy of 600
meV/atom away from the hull) that do not have to be considered in the subsequent
complete electronic structure calculation using VASP, thus saving additional time and re-
sources. The framework evidently makes extensive use of machine learning and depends
strongly on the quality of the trained universal machine learning force field. However
through this cycle of training a UFF, obtaining new training data by applying the UFF
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Figure 4.1: Chemical element distribution for the two-dimensional extended compound
dataset.

and reusing that new training data to deploy an improved model, the result is that em-
ploying this cycle many times over, the ever-improved models will allow for a more and
more complete description of all the two-dimensional compounds (going also beyond the
restriction of binary and ternary compounds).

In line with this thinking, an extended two-dimensional dataset with chemical element
distribution, shown in Figure (4.1) and space group distribution (4.2), was constructed.
Concretely, the dataset consists of the DFT geometry optimization data for 88’483 two-
dimensional structures. For each step, the respective forces, stresses, and energies were
computed using VASP with the PBE functional. The last entry for each run corresponds
to the fully relaxed DFT structure with final energy, forces and stress that correspond to
the most stable configuration.

An outlier removal was performed on the data by removing structures that contain more
than 20 sites as well as structures with isolated atoms, i.e. structures containing atoms
without any neighbouring atoms within the cutoff radius. Furthermore, structures pos-
sessing extremely large energies, forces and stresses were filtered out. For energies, we
chose to remove values outside the range of E/N > 0 and E/N < −20 (in units of
eV/atom). For forces, any values with magnitudes exceeding 20 eV/Å were discarded.
Similarly, stresses with magnitudes surpassing 500 kbar were also removed from consid-
eration. These cutoffs were deemed sensible and selected based on the full distribution
of energies, forces and stresses and yields the following outlier removed distributions

47



Chapter 4. Results and Discussion Fabian Jaeger

P4
/n

m
mP2

P-
3m

1

Pm
a2

P-
31

m

Pm
m

m

Pc
ca

Pm
m

n

Pm Pc

C
2/

m

Pm
m

2

P4
/m

m
m

Pm
m

a

P3
12

P2
_1

/m

P6
m

mP1 C
m

P3
1m

Space group symbol

101

103

C
ou

nt

tr
ic

lin
ic

6,
55

5 
(7

%
)

m
on

oc
lin

ic
25

,6
60

 (2
9%

)

or
th

or
ho

m
bi

c
23

,5
66

 (2
7%

)

te
tr

ag
on

al
4,

97
3 

(6
%

)

tr
ig

on
al

19
,1

71
 (2

2%
)

he
xa

go
na

l
8,

55
8 

(1
0%

)

Figure 4.2: Spacegroup distribution of structures contained in the two-dimensional
dataset.

shown in Figure (6.2). The stresses

σ =



σxx σxy σxz
σyx σyy σyz
σzx σzy σzz


 (4.1)

and forces, represented as a multidimensional array [natoms × [3 × 3]] (each entry corre-
sponding to the individual x, y and z components of the force) for each structure, were
flattened to a scalar value by aggregating over all dimensions. Since we are considering
two-dimensional structures, all stress components with indices z will be zero. The elim-
ination of outliers from the dataset resulted in a reduction of 3,204 materials, leaving a
total of 85,279 two-dimensional materials.

In the original paper by Wang et al. [40], a transfer-learned M3GNet model with base
hyperparameters was employed. With this base configuration, they were able to obtain a
mean-absolute energy error of 198 meV/atom and 96 meV/atom for the median-absolute
energy error.

In their case, they only selected the first, last and N/3 (where N is the total number of
geometry optimizations) step for each material in the geometry optimization as training
data.

In this thesis, we will investigate varying the selection of the geometry optimization
steps controlled by the cutoff parameter and its effect on the accuracy of our model.
Concretely, the cutoff ecut determines by verifying |Ei/N − Ei+1/N | > ecut which steps
i in the geometry optimization are retained for our data. Smaller cutoffs ecut evidently
results in larger datasets with more geometry optimization steps. Since a significant
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portion of the energies turn out to very similar as the geometry optimization converges,
we might be concerned that small cutoffs might lead to overfitting of our models to the
small energy/force regime. If the cutoff on the other hand is too-large and none of the
geometry relaxation steps satisfy the above condition, we resort to the selection of steps
[0, N/2, N ], which might results in a too small dataset for our networks to effectively train
on. To get an estimate of the impact of the cutoff on the dataset sizes, we consider the
outlier-removed dataset with a 90:5:5 split. For a cutoff value of 1000000, the dataset
contains (230185,12812,12838) geometry optimization steps for training, validation and
testing respectively. Conversely, for ecut = 0.02 we obtain (432997, 24337, 23596) data
points, essentially retaining double the number of steps in the geometry optimization.

In a first step, we conduct a search for the most effective combinations of hyperparameters
and cutoff values for both M3GNet and Mace models. Although Mace has been designed
with molecules in mind, it has very recently been applied to material specific problems
in the work of Kovacs et al. [47]. However, their evaluation was limited to assessing
the direct model predictions errors across two material databases, a metric that does not
necessarily provide a direct measure of performance in applications such as for geometry
optimizations. Our focus will lie on the latter, as geometry relaxation during high-
throughput studies are the main application of universal force-fields so far.

To relax our structures using the machine learning force field, we utilize the Fast Inertial
Relaxation Engine (FIRE) algorithm [6]. The relaxation process consist of 1000 iteration
steps, with a convergence criterion set to f = 0.1. The convergence criterion dictates the
required energy difference between two consecutive steps. To consider the relaxation
successful, convergence must be achieved at any stage within the 10000 iteration steps.
Once convergence is attained, the algorithm proceeds to the next structure and this is
repeated until all structures are fully relaxed.

The outputs of the relaxation are both a structure and an energy. An accurate measure for
a successful ML force field employed for geometry optimization will thus have to include
both an energy and area error comparing the DFT and ML-relaxed structures. Defining
an energy error is straightforward, since our energies are already scalar values that can
easily be compared. In contrast for condensing a two-dimensional structure to a scalar
value, as many viable options exist. In this thesis, we opted to compute the area of a
structure computed using the estimated lattice parameters a and b (corresponding to the
non-periodic components of the material) via:

Area = ∥a× b∥/atoms (4.2)

Taking the cross-products of a and b yields a vector that is perpendicular to both, rep-
resenting the area they cover when we calculate its magnitude by taking the norm. This
quantity has the units of Å2

/atom.

It is important to note that the different architectures have different unit conventions. In
the case of M3GNet, energies are expressed in electron volts eV, forces in units of eV/Å
(with N the number of atom in each structure) and stresses in units of gigapascals (GPa).
Stresses in VASP are typically expressed in kilobars (kbar) and need to be adjusted to be
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Figure 4.3: The evolution of validation mean-absolute error (MAE) for the energies, forces
and stress as a function of steps for M3GNet on the two-dimensional dataset. Cutoff
(ecut) and learning rates (lr) are varied while maintaining a fixed batch size.

compatible with M3GNet. To achieve this, the stresses are multiplied by −0.1 to convert
the units to gigabars (Gbar). The negative sign is necessary because M3GNet follows a
convention where compressive stresses are considered positive.

On the other hand, both Mace and Nequip employ stresses measured in units of electrons
volts per cubic angstrom (eV/Å3) instead of kbar. To convert VASP stress units of kbar to
eV/Å3, we multiply by −0.1 to obtain the values in gigabars (Gbar) followed by a division
of ∼ 160.22.

Furthermore, our force field training of Mace and M3GNet involving the two-dimensional
structures employs the loss function defined in equation (3.4). This loss function opti-
mizes for energies, forces and stresses. The M3GNet and Mace package are additionally
modified to remove any z-stress components (determined to be the non-periodic direc-
tion) obtained and used in this loss function. This adjustment ensures that there are no
unintended gradients along the z directions that could potentially impact our predictions
in undesirable ways.

4.2 UFF for two-dimensional structures

4.2.1 M3GNet

We start by performing a sequential hyperparameter optimization for M3GNet models
trained on the extended two-dimensional dataset of varying cutoffs ecut = 0.01, 0.02, 1000000.
For each of these cutoffs two models of learning rate 1 × 10−3 and 1 × 10−4 with fixed
batch size 128 were trained using a 90:5:5: dataset split.

Figure (4.3) shows the training curves for the validation mean-absolute error of energy,
forces and stresses obtained from direct model predictions. We find that across all ener-
gies, forces and stresses the models using the cutoff ecut = 1000000 perform best. When
we consider shorter training times, lr = 1 × 10−3 is favored with a validation MAE of
38.47 meV/atom, 71.93 meV/Å and 60.5 × 10−3 GPa for energies, forces and stresses
respectively. However, at longer time scales model lr = 1 × 10−4 with bs = 128 achieves
similar performance with MAEs of 39.14 meV/atom, 72.81 meV/Å and 58.7× 10−3 GPa
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for energy, forces and stresses respectively. Notably, the forces and stresses are slightly
improved over the lr = 1× 10−3 model at the expense of a minor loss in energy accuracy.

The performance of these two models with learning rate lr = 1×10−4 and lr = 1×10−3 on
the validation set for ecut = 10000000 dataset is then compared to models with the same
learning rate but of of different batch sizes 256 and 512. The resulting training curves
can be seen in the Figure (4.5) from which we can conclude that for direct predictions of
energy, forces and stress the models with batch size 128 and lr = 1× 10−4, lr = 1× 10−3

and dataset with ecut = 1000000 achieve the best performance.

As postulated in the beginning of this chapter, we suspect that the inferior performance
of models trained on datasets with smaller cutoffs can be traced-back to over-fitting to the
low energy sector. This issue is potentially exacerbated by the fact that for smaller cutoffs,
certain elements have more geometry optimization steps than others, as depicted in Fig-
ure (6.3), which is further amplified by the general class in-balance shown in Figure (4.1).

In order to gauge the effectiveness of the models lr1e-4bs128 and lr1e-3bs128 for
geometry optimizations, we perform a relaxation of the 4279 test and 4279 validation
structures for the ecut = 1000000 dataset using these force fields and cross-reference
these with the relaxed DFT structures. We also consider the models with cutoff 0.01
and 0.02. This is because the direct model evaluation performed above cannot give a
clear indication which of these models performs best at performing structural relaxations,
although we postulate that a small general prediction error is positively correlated with
a small relaxation error. The energy and area mean-absolute error for these relaxations
can be found listed in Table (4.1). All the models listed have a convergence rate of 97.8%
and above. We observe again that the models with ecut = 1000000, particularly model
lr1e-4bs128 displays superior energy performance in both for the validation and test
set. The MAE for the energies and area are 76.81 meV/atom and 78.95 × 10−2 Å2

/atom

respectively, while the median is given by 33.88 meV/atom and 15.87 × 10−2 Å2
/atom.

Our model thus yields more than a two-fold improvement to the model from Wang et al.
[40], where a mean-absolute error of 198 meV/atom and median of 98 meV/atom for the
energies was achieved. That there is good agreement between the model predictions and
the DFT ground truth can also be seen from the Figure (4.4), which show high-linearity
and a large R2 value in the energies.

Regarding the area errors, the lr1e-3bs128 models produce slightly improved results
compared to the lr1e-4bs128 models, a pattern that is consistent across both the test
and validation sets, as well as across different cutoffs. It is also somewhat unexpected
to find that the errors for energy and area are worse for the validation data compared
to the test data. This discrepancy could just be an unintended consequence of the data-
splitting processed, in which keys are randomly assigned for the validation and test
sets. One possible approach to mitigate this effect would be for example through k-fold
cross-validation.

Lastly, we wish to investigate the accuracy of the models in its relaxation predictions across
all the different chemical elements contained in the dataset, to gauge their usefulness as
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Figure 4.4: Line-Deviation plots for energy and area ofM3GNet with lr = 1 × 10−4 and
bs = 128 on the validation set for (a) and (c) and test set for (b) and (d) respectively.
These models were trained with a 90:5:5 split on the two-dimensional dataset with ecut =
1000000.
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Figure 4.5: Validation MAE evolution with epochs for M3GNet on two-dimensional
dataset with ecut = 1000000 for varying batch sizes.

a universal force field. For lr1e-4bs128 with ecut = 1000000 the energy and area MAE
distributions over the periodic system can be found in Figure (6.7a) and Figure (6.7b) for
the validation data and Figure (4.7a) and Figure (4.7a) for the test data.

In terms of the energies, our findings align with previous results that documented the first-
row anomaly [13, 27, 50]. This pattern shows elements boron, carbon, nitrogen, oxygen
and fluorine consistently perform below average when compared to other elements1.
Additionally, we find that metals, particularly transition metals like niobium and tungsten,
along with the alkali earth metal barium to possess a higher MAE than other groups
across both the validation and test sets. These large errors for the metals can most
likely be explained by DFT inadequate representation of magnetic interactions, which
consequently complicates model learning. Previous studies, such as those conducted by
Schmidt. et al. [27], found similarly large errors for certain metals. In their case, the main
culprits were chromium, manganese and iron. However, in our study, these elements
appear to yield reasonable results for both the validation and test sets.

Furthermore we observe large fluctuations of the errors across validation and test sets for
certain lanthanide and actinide metals (elements such as lanthanum for example have a en-
ergy validation MAE of 92.2 meV/atom while for the test set we obtain 203.4 meV/atom).
We suspect the reason is twofold. Firstly, there is comparably fewer data for these groups
(we are dealing with an unbalanced dataset), as evident from Figure (4.1). Secondly,
the pseudopotentials currently available in DFT frameworks such as VASP for these ele-
ments frequently introduce numerical complications that can hinder the convergence of
the geometry optimizations [50].

As for the area errors, we observe a similar instability pattern for the lanthanides and
actinides. Interestingly, however, no first row anomaly in either the validation and test set
can be observed. Instead, the alkali and alkali-earth metals yield large area errors that are
present in both the validation and test sets. Particularly noticeable is the disproportionally
large validation area MAE of 474.5×10−2 Å2

/atom for caesium, which lies well above the
second-worst MAE of Rubidium with 269.1×10−2 Å2

/atom. It is somewhat surprising to

1We note that fluorine in our case seems to be performing reasonable well.
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Set Model Cutoff = 0.01 Cutoff = 0.02 Cutoff = 1000000

Val
lr1e-3bs128 Energy 87.43 88.33 87.31

Area 93.37 94.95 93.73

lr1e-4bs128 Energy 90.62 90.14 84.38

Area 94.41 96.86 94.75

Test
lr1e-3bs128 Energy 84.23 83.73 82.68

Area 76.84 77.72 76.42

lr1e-4bs128 Energy 82.31 84.09 76.81

Area 80.17 78.99 78.95

Table 4.1: Mean-absolute error comparison for M3Gnet relaxation results on the two-
dimensional structures on test and validation structures for models lr1e-3bs128, lr1e-
4bs128 on cutoffs 1000000, 0.01, 0.02. The relaxation were performed using nsteps = 1000
and fmax = 0.1. All energies are presented in units of [meV/atom] and areas in units of
[Å2

/atom× 100]. The area and energy predictions highlighted in bold represent the best
values achieved by each model across various cutoffs, while the second best options are
underlined. The color red indicates the best area prediction for a given cutoff, while blue
signifies the best energy prediction.

find large errors in the first and second row of the periodic table only. Generally, we would
anticipate that larger elements across the entire periodic table would produce greater area
errors.

4.2.2 MACE

Adopting the same procedure and analysis as for M3Gnet, we next employ Mace to train
a universal force field. However, at this stage, we forego the analysis of various cutoffs and
concentrate solely on the results with ecut = 1000000. For this particular cutoff, six different
MACE force fields of varying batch sizes 64, 128 and 192 and learning rates 0.01, 0.03 and
0.003 were trained, and their training curve can be seen in Figure (6.9). The models
lr0.001bs64 and lr0.003bs128 performed best on the validation data. For lr0.01bs64
we obtain direct MAE prediction errors of 33.78 meV/atom, 76.46 meV/Å and 57.81 ×
10−3 eV/Å3 for energies, forces and stresses, respectively. Similarly, for lr0.003bs128,
the direct MAE prediction errors were 35.27 meV/atom for energies,73.89 meV/Å for
forces and 57.8× 10−3 eV/Å3 for stresses.

The results for the subsequent relaxation of the test data using our two trained Mace
models can be found in the Table (4.2). We find that the model lr0.003bs128 outperforms
lr0.01bs64 when used as a force field to relax structures. The distribution of the energy
and area errors across the periodic system for this better performing model can be found
in the Figure (4.8). We again observe the first-row anomaly in our energies, larger area
errors for alkali and alkali earth metals and larger errors for lanthanides and actinides in
both the area and energies.
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Figure 4.6: Distribution of the mean absolute error (MAE) in the validation data for (a)
energy and (b) area, categorized by chemical elements in the periodic system. This is
using the M3Gnet model with a learning rate lr = 1× 10−4 and a batch size of bs = 128.
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Figure 4.7: Distribution of the mean absolute error (MAE) in the test data for (a) energy
and (b) area, categorized by chemical elements in the periodic system. This is using the
M3Gnet model with a learning rate lr = 1× 10−4 and a batch size of bs = 128.
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Model Cutoff = 1000000

lr0.003bs128 Energy 121.65
Area 68.60

lr0.01bs64 Energy 149.33
Area 69.59

Table 4.2: Mace relaxation results for the two-dimensional structures on test structures
with nsteps = 1000 and fmax = 0.1 and cutoff=1000000. The energies are given in units of
meV/atom and the area in [Å2

/atom× 100].

Although the energy MAE for both models is worse than that of M3GNet (compare to
Table (4.1)), it is noteworthy that the area error is considerably small in comparison to
M3GNet. This is also evident from the larger area R2 coefficient the Mace models obtain
for the line plot showing the deviations from the DFT ground truths in Figure (6.8) when
compared to Figure (4.4).

For all trained models, we chose the base Mace configuration with a max equivariance
of L = 2. We set the number of channels of node feature embedding to be 192 and use
the standard number of hidden irreducible representations of 32. Unlike M3Gnet, Mace
models can employ an adaptive learning scheduler for the weights of the different losses
for stresses, forces and energies, referred to as stochastic weight averaging (SWA). At the
hyperarameter start-swa=50 step2, the weight of the energy in the loss is increased by
swa-energy-weight = 10 to yield a better energy prediction at the end of the training
procedure. The parameter swa-lr = 1 × 10−3 sets the learning rate after the start-swa
steps. These are only a few of the hyperparameters available to Mace, and we suspect
that further work, consisting in a broader exploration of its hyperparameters, could be
fruitful in identifying parameters that yield area and energy errors of more comparable
magnitude to M3GNet as well as minimise the currently large discrepancy between the
two errors.

4.3 Alloy specific force-field

After carrying out the evaluation of the universal machine learning force field in the
last section, we aim to determine the potential benefits of transfer learning. Specifically,
we will assess whether transfer learning from the two-dimensional universal Mace and
M3Gnet models to material-specific force fields proves advantageous. To investigate this
claim, we will employ a two-dimensional alloy dataset. To begin, we present a brief
overview and statistical analysis of this dataset.

This dataset consists of DFT geometry optimizations for a variety of alloyed compounds,
namely: iridium ruthenium disulfide (IrRuS2), molybdenum tantalum disulfide (MoTaS2),

2At 100 epochs, marked by start-swa = 50, a notable change can be observed in the training figures (6.9).
The validation energy error exhibits a sudden decrease beyond this point, while the force errors show an
increase.
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Figure 4.8: Distribution of the mean absolute error (MAE) in the test data for the two-
dimensional dataset for (a) energy and (b) area, categorized by chemical elements in the
periodic system. This is using the Mace model with a learning rate lr = 0.003 and a batch
size of bs = 128.
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Model Energy [meV] Area [Å2
/atom× 100]

Normal, lr = 1e-3, bs=128 9.82 1.10
Transfer, lr = 1e-3, bs=128 10.88 1.05

Table 4.3: Alloy trained on all systems for M3GNet with Cutoff = 0.01. The transfer model
loaded here is the overall best performing model on the two-dimensional data with lr=1e-
4, bs=128.

molybdenum tungsten disulfide (MoWS2), niobium molybdenum disulfide (NbMoS2),
titanium-iron disulfide (TiFeS2), titanium niobium disulfides (TiNbS2), titanium tantalum
disulfide (TiTaS2), titanium vanadium disulfide (TiVS2) and zirconium tantalum disulfide
(ZrTaS2). All these alloys fall into the category of transition metal dichalcogenides (TMDs),
a class of two-dimensional materials. These materials have gained significant interest due
to their potential applications in energy storage [12].

The general formula for TMDs is MX2 where M represents a transition metal and X is a
chalcogen such as sulfur. We consider the subset of transition metal disulfides. For our
transition metal disulfides, the composition ratio x yields a ratio between the two sulfides,
for example for MoTaS2 we will have Mo(x)Ta(1− x)S2.

The chemical element distribution can be found in Figure (6.10) and the distribution of
the space group symmetries in Figure (6.11). We observe that with respect to chemical
elements the dataset is unbalanced with zirconium and vanadium appearing the least. The
distribution of the total energy per atom of each system, combined total energy, stresses
and forces can be found in Figure (6.13a), Figure (6.13b), Figure (6.12a) and Figure (6.12b)
respectively.

4.3.1 M3GNet

The training of M3Gnet on separate alloy systems included the use of models with a
learning rate lr = 1× 10−3 and bs = 128. The cutoff value was chosen to be 0.01 and the
data was split into a ratio of 90:5:5 for training, validation and testing respectively. This
training was conducted twice, once using traditional learning and once using transfer
learning from the two-dimensional dataset. The MAE results for the relaxation using the
test set can be found in the Table (4.4). The line and error plots are shown in the Figures
(6.14), (6.15), (6.16), (6.17) in the appendix. As expected, the individual system errors are
much lower compared to the MAE for the energy and area of the universal force fields
from the last section. Surprisingly, however, the transfer model performs worse for the
energies on average than the model with normal training. Exceptions include alloys that
contain molybdenum, i.e MoTaS2, MoWS2, NbMoS2. In particular, the area errors are
substantially worse for all alloy systems, except NbMoS2. We suspect that by lowering the
learning rate we might mitigate so-called catastrophic forgetting [25] in which the prior
learned information from the model is ‘forgotten‘ when trained on new data. It could
however also indicate unstable training.
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Alloy System Cutoff = 0.01
lr=1e-3, normal lr=1e-3, transfer

IrRuS2
Energy 15.98 53.13
Area 1.47 26.08

MoTaS2
Energy 2.46 1.72

Area 0.45 0.49

MoWS2
Energy 0.51 0.36

Area 0.51 0.948

NbMoS2
Energy 4.90 1.26

Area 0.31 0.39

TiNbS2
Energy 16.58 28.84
Area 4.61 52.29

TiTaS2
Energy 6.98 33.90
Area 26.85 41.17

TiVS2
Energy 19.08 28.83
Area 1.44 45.07

ZrTaS2
Energy 24.73 14.96

Area 1.69 8.69

Table 4.4: Relaxation for M3GNet for datasplit 9055 with batch size 128 on the two-
dimensional alloy dataset. The transfer model used here is the UFF trained on all two-
dimensional data with lr=1e-4 and bs=128. The relaxations were performed using the test
set. The energies are given in units of meV/atom and the area in units of Å2

/atom× 100

Furthermore, we combined all alloy systems into a combined dataset to train a specific
TMD force field again using normal and transfer learning. The relaxation results can be
found in Table (4.3) and visualized in Figure (6.18). Similarly to before, we suspect we can
attribute the slightly worse performance of the transfer model compared to the normal
model, to the use of a too large learning rate.

4.3.2 MACE

Using MACE we perform a more exhaustive evaluation of the alloy dataset, where now in
addition to a 90:5:5 dataset split, we also consider an 80:10:10 ratio with cutoffs 0.01 and,
1000000. This will give us better holdout estimates, especially in settings where the data
is scarce. The results, shown in Table (4.6) for the 80:10:10 datasplit and Table (4.5) for
the 90:5:5 ratio, were obtained by a structure relaxation using the test data. Contrary to
M3GNet, these results indicate that transfer learning yields at least similar if not improved
accuracy. Furthermore, the increased geometry optimization steps in the Cutoff=0.001
dataset compared to the Cutoff=1000000 dataset, seems to benefit performance for the
transfer models across all alloy systems. We suspect that this in part because MACE is a
more expressive model compared to M3GNet that benefits positively from increased data
without the unwanted side effects of overfitting. However, evident from a comparison to
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the M3Gnet results in the Table (4.4) it seems MACE fails to obtain relaxation results for
multiple alloy systems such as IrRuS2 and NbMoS2, indicating a more unstable training.
Another factor that could contribute to this failure is the dataset itself. In the instance
of IrRuS2 with the cutoff = 0.001 dataset for both splits, the inability to relax the system
is observed in both the normal and transfer learned models, hinting at some underlying
problem in the dataset.

Additionally, the increased GPU memory requirements of MACE limited the ability to
increase the batch size of the models beyond the lower double digits. We suspect that
this could be an additional reason for the instability and sometimes inferior accuracy for
certain alloys compared to M3GNet.

Despite these drawbacks, the successful relaxations yielded models with much improved
energies compared to M3GNet, with the sole exception of ZrTaS2 as can be seen from
the Table (4.7). This outcome differs significantly from our observations for the universal
force fields, where Mace produced inferior energy outputs but achieved better area error
results.

Alloy System Cutoff = 0.001 Cutoff = 100000
lr=0.0001, transfer lr=0.003, normal lr=0.0001, transfer lr=0.003, normal

IrRuS2
Energy - - 12.95 17.74
Area - - 8.11 24.74

MoTaS2
Energy 1.97 1.75 2.80 2.98
Area 2.47 4.24 4.64 5.59

MoWS2
Energy 0.49 1.73 1.96 5.00
Area 2.46 5.03 6.36 6.27

NbMoS2
Energy 1.84 - 3.62 -
Area 2.10 - 6.18 -

TiNbS2
Energy 2.66 3.04 2.78 89.3
Area 4.20 5.52 5.23 3.75

TiTaS2
Energy 2.22 13.84 3.02 2.79
Area 3.42 6.15 5.89 7.46

TiVS2
Energy 4.16 2.62 - -
Area 12.46 8.41 - -

ZrTaS2
Energy 49.5 61.92 46.39 44.98

Area 27.46 32.22 28.04 29.04

Table 4.5: Relaxation MAE results for MACE with batch size 16 using the test dataset
obtained from a 90:5:5 dataset split. Energies are given in units of meV/atom with area
errors in units of [Å2

/atom× 100].

4.4 Formation Energy training

Lastly, we will explore direct formation energy training from our models trained on the
alloy dataset. As elaborated on in section (2.4), the formation energy plays a pivotal
role in understanding and predicting the properties and stability of various compounds
by quantifying the energy required for the creation of a compound from its constituent
elements. Traditionally, CE models are fitted to DFT data to model alloys. These are
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Alloy System Cutoff = 0.001 Cutoff = 1000000
lr=0.0001, transfer lr=0.003, normal lr=0.0001, transfer lr=0.003, normal

IrRuS2
Energy - - 13.95 2.48

Area - - 95.52 26.22

MoTaS2
Energy 2.14 - 2.31 2.20
Area 2.77 - 4.15 4.84

MoWS2
Energy 1.27 1.85 1.96 5.7
Area 24.59 4.35 6.56 6.77

NbMoS2
Energy 3.11 - 2.29 1.98

Area 5.02 - 5.85 4.90

TiNbS2
Energy 2.91 6.74 2.23 30.68
Area 4.95 7.50 3.40 1.85

TiTaS2
Energy 2.78 3.60 2.58 3.96
Area 4.66 4.80 6.38 8.34

TiVS2
Energy 3.39 4.44 1.63 2.66
Area 11.61 10.77 11.00 12.82

ZrTaS2
Energy 2.43 7.02 - 27.99
Area 9.84 10.12 - 20.41

Table 4.6: Relaxation MAE results for MACE with batch size 16 using the test dataset
obtained from a 80:10:10 dataset split.

required to treat larger unit cells needed to model smaller percentages when alloying, to
treat disorder and temperature in, e.g., Monte Carlo simulations.

In this context, we will explore whether machine learning force fields can serve as a
viable replacement for Cluster Expansion in formation energy predictions. The formation
energy dataset, originating from the work of Silva. et al. [37, 38], consists of Cluster
Expansion for comparison and DFT formation energy predictions for training obtained
using CASM (Cluster Approach to Statistical Mechanics) [52] and VASP [3, 4] respectively,
of the transition metal disulfides MoTaS2, MoWS2, NbMoS2 and TiTaS2 with the same
structures as in the two-dimensional alloy dataset. We clarify that we have predictions
of alloys for various compositions along the tie-line, A(x)B(1 x)S2 including the pristine
end-members AS2 of x = 0 and BS2 of x = 1.

It is important to note that the formation energies are calculated "per substitutional lattice
sites", which refers to the number of transition metals in the system. All the prototypes
for which we have parameterized a Cluster Expansion possess one transition metal in the
unit cell. Therefore, the per atom formation energies amount to one-third of these values.

The distribution of formation energies is illustrated in Figure (4.10). The vertical lines
mark EF = 0, indicating the threshold for the formation of stable compounds. We note
that all combinations of Mo(x)W(1− x)S2 exhibit negative formation energies, indicating
their stability across all alloy configurations included in the dataset. On the contrary,
all NbMoS2 alloys possess positive formation energy and thus don’t form under normal
conditions.

Before we delve into the results obtained from the machine learning force fields, we
briefly review the formation energy predictions derived from Cluster Expansion. This
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Alloy System MACE M3GNet
Cut=0.001, lr=0.0001, transfer Cut=0.01, lr=1e-3, normal

IrRuS2
Energy - 15.98

Area - 1.47

MoTaS2
Energy 1.97 2.46
Area 2.47 0.45

MoWS2
Energy 0.49 0.51
Area 2.46 0.51

NbMoS2
Energy 1.84 4.90
Area 2.10 0.31

TiNbS2
Energy 2.66 16.58
Area 4.20 4.61

TiTaS2
Energy 2.22 6.98
Area 3.42 26.85

TiVS2
Energy 4.16 19.08
Area 12.46 1.44

ZrTaS2
Energy 49.5 24.73

Area 27.46 1.69

Table 4.7: Model comparison between best-performing Mace and M3GNet models on the
90:5:5 split test dataset.

will provide us with a benchmark required of our machine learning models in order to
outperform Cluster Expansion.

Figure (4.11) presents the relationship between the formation energy prediction obtained
from Cluster Expansion and the ‘ground truth‘ predictions from DFT for the four transi-
tion metal dichalcogenides available in our dataset. It is evident that Cluster Expansion
yields impressive results, with an almost perfectR2-coefficient for all systems. Some vari-
ations do occur, with the best performance achieved by the alloy system MoWS2 with the
smallest variance in the formation energy across the dataset. To get a grasp on an overall
alloy-specific Cluster Expansion error, the system-specific formation energy datasets were
aggregated and yielded the results shown in Figure (4.10b).

To get an accurate measure of comparison for the machine learning models, we have to
similarly split this formation energy dataset into training, validation and test sets and
calculate the mean-absolute error of the Cluster Expansion for each of these subsets. This
is shown in the Table (4.9). We find for individual alloy subsets the errors are quite evenly
distributed across the training, validation and test sets. It is important to point out that
this data splitting takes place after the Cluster Expansion model has been trained on
the whole dataset, thereby not considering a separate holdout for validation and testing.
This is evident from MoTaS2, where the test MAE is significantly lower than the training
MAE3. This approach could possibly skew the comparison with the error rates that we
obtain from the machine learning models, and fails to give us a means to quantify the
generalization capability of the Cluster Expansion approach. In the future, we aim to
produce a more accurate error comparison between the models by properly considering

3This scenario is unlikely to arise if only the training set is used to fit the Cluster Expansion model

63



Chapter 4. Results and Discussion Fabian Jaeger

0 250 500 750 1000
Epoch

0.000

0.002

0.004

0.006

0.008

M
AE

 [e
V/

at
om

]

Transfer model

MoWS2
TiTaS2
NbMoS2
MoTaS2

0 250 500 750 1000
Epoch

M
AE

 [e
V/

at
om

]

Normal model

NbMoS2 DFT
MoWS2 DFT
MoTaS2 DFT
TiTaS2 DFT
NbMoS2
TiTaS2
MoTaS2
MoWS2

Figure 4.9: Both Nequip models aiming at predicting the formation energy validation
MAE were trained with the dataset with a cutoff of 1000000 and data split 801010. The
structures used for training the Nequip model were obtained from (left) Mace transfer
model with lr=0.0001 and bs = 16 (right) Mace model trained normally with lr=0.003 and
bs=16 from the ML model.

the necessary data separation for the Cluster Expansion models. Nevertheless, these
errors can give us a good measure to the lower-bound of the test and validation errors we
can obtain for Cluster Expansion.

For the training of formation energy using machine learning force fields, we turn to Nequip
due to its convenient adaptation of an energy-only training4. We will employ a model
with a learning rate 0.0075 and a batch size of 16.

We train these Nequip models using three distinct set of inputs. The first dataset, that will
serve as input to model ML1, is assembled from the formation energy and fully relaxed
training structures obtained from the Mace model of learning rate 0.003 and batch size 16
of the two-dimensional alloy dataset. Our second dataset, designed for the ML2 model,
is similarly constructed using the relaxed structures obtained from the transfer learned
Mace model of learning rate 0.001 and batch size 16. Finally, our third dataset serves
as a comparison and involves using the fully relaxed DFT structures. In principle these
structures should result in the best formation energy predictions since these correspond
to the best relaxed structures.

The training evolution for all three model inputs can be seen in Figure (4.9). The model
test and validation predictions for each of these across the four alloys is shown in the
Table (4.8) with the Cluster Expansion errors shown for comparison. Inline with our
expectation, we find that the transfer model ML2 performs better than the one using the

4Attempts by me have been made to adapt the Mace code to such an energy-only training, to no avail
however.
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Figure 4.10: Formation energy distribution for alloys.

relaxed structures for the normal trained Mace model ML1, except forTiTaS2 in the test set.
As anticipated, the ML model utilizing the DFT relaxed structures performs consistently
the best. However, it is noteworthy that in specific instances, such as NbMoS2 and MoWS,
ML2 has matching errors.

Importantly, our results demonstrate, that ML2 outperforms Cluster Expansion in terms
of accuracy for all alloys across both the validation and test sets and the improvements
can reach as much as 0.12meV for MoWS2.

4.4.1 Stoichometry models

We also explored the use of stoichometry models such as Roost [22] and CrabNet [39].
These models disregard the exact spatial arrangement of atoms as model input and instead
only use the materials stoichometry, which is the ratio of different elements in a material.
However we found that these models do not yield satisfactory results for determining
the formation energy of alloys. One obvious inherent limitations of stoichometry models
is that they cannot differentiate between alloys that have the same composition but a
different overall spatial arrangement of atoms5. This would coincide with earlier findings
such as [27], where Roost was trained on perovskite data with poor results.

5For example, the same two elements can form different alloy phases with distinct properties depending
on the ratio and arrangement of atoms.
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Figure 4.11: Deviation line plot for DFT formation energy and Cluster Expansion forma-
tion energy for (a) the individual systems separately and (b) all the systems combined.

Set Model NbMoS2 MoWS2 MoTaS2 TiTaS2

Test

Clex 0.161 0.011 0.219 0.284
ML (relaxed DFT) 0.067 0.006 0.065 0.208

ML 1 (normal) 0.098 0.012 0.149 0.230
ML 2 (transfer) 0.067 0.006 0.099 0.259

Val

Clex 0.158 0.010 0.266 0.278
ML (relaxed DFT) 0.060 0.072 0.138 0.192

ML 1 (normal) 0.144 0.010 0.198 0.250
ML 2 (transfer) 0.084 0.007 0.031 0.198

Table 4.8: Comparison of Mean Absolute Error (MAE) in formation energy [meV/atom]
for both validation and test sets. The comparison includes the results for Cluster Expan-
sion (Clex) and three Nequip models, which were trained with a learning rate of 0.0075
and a batch size of 16, for the alloys NbMoS2, MoWS2, MoTaS2, and TiTaS2. The test and
validation sets were obtained from a 80:10:10 dataset split. ML1 Model uses the final
relaxed structures from the normally trained Mace model with learning rate 0.003 and
batch size 16 as input. ML 2 uses the structures from the transfer learned Mace model
with lr=0.0001 and bs = 16. Both Mace models were trained with the cutoff of 1000000.
ML (relaxed DFT) uses the fully relaxed DFT structures as inputs. The best performing
models for the validation and test sets separately for each of the alloys, are denoted in
bold, while second-best models are underlined.
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Alloy Dataset MAE Clex [meV/atom] RMSE Clex [meV/atom]

MoTaS2 train 0.267 0.494
MoTaS2 val 0.266 0.395
MoTaS2 test 0.219 0.343
MoWS2 train 0.011 0.014
MoWS2 val 0.009 0.013
MoWS2 test 0.011 0.014
NbMoS2 train 0.190 0.307
NbMoS2 val 0.158 0.273
NbMoS2 test 0.161 0.238
TiTaS2 train 0.277 0.355
TiTaS2 val 0.278 0.358
TiTaS2 test 0.284 0.373

Table 4.9: Mean absolute and root-mean squared error for the Cluster Expansion for
each of the datasets where the ground truths here are the computed DFT energies. The
train, val and test keys correspond to the keys of the two-dimensional alloy dataset of
cutoff=1000000 with an 80:10:10 split.
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Chapter 5

Conclusion and Outlook

In this thesis we have demonstrated the potential of using machine-learned force fields
for various application in material science. Through a systematic exploration of various
model architectures and training schemes, it has been shown that these computational
techniques offer a viable alternative to traditional method such as Density Functional
Theory and Cluster Expansion.

The universal force field training on a two-dimensional dataset showed a notable, more
than two-fold improvement in energy predictions compared to a previous model. These
UFF models will open the opportunity for more efficient and accurate high-throughput
searches of new two-dimensional materials and the creation of a larger dataset span-
ning the two-dimensional compound space. In fact, the creation of a large dataset of
ML predicted structures in the vein of Matterverse (https://matterverse.ai/) for two-
dimensional structures using the developed force field was just started by the Marques
group in Bochum.

Furthermore, these machine-learning force fields can serve as an effective pre-relaxation
technique, reducing computational overhead and time requirements before employing
full DFT geometry optimizations.

The advent of recent notable improvements to graph neural network models for force fields
has the potential to expedite these advancements. In this thesis, we have utilized the novel
new Mace architecture on the two-dimensional dataset and compared its performance to
the previously employed M3GNet model and found promising results with regards to the
structure prediction. However, further investigation is necessary to definitely ascertain
the advantages of Mace over M3Gnet in predicting energies.

Furthermore, we have been able to verify the effectiveness of transfer learning from our
trained universal force fields to material specific force fields. Although the improvements
in transfer learning to an alloy dataset were marginal in some cases, we anticipate the gap
between regular learning and transfer learning to become much more pronounced when
data for the specific material are limited. In these scenarios, transfer learning will prove
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particularly beneficial, enabling us to achieve results that are more comparable to DFT
with considerably reduced time and resource requirements.

Lastly, we have applied a graph neural network to directly predict the formation energies
of alloys from structures relaxed using our alloy-specific force field. Traditionally, alloy
formation energy predictions involve the use of Cluster Expansion, which requires the
creation of a material specific DFT dataset to fit the Cluster Expansion model to. However,
this method lacks transferability to other materials, limiting its generalizability despite the
somewhat large time investment it requires. We were able to demonstrate improved per-
formance, ranging up to 0.12 meV/atom, for machine learning models using ML-relaxed
structures, offering the additional advantages of knowledge transfer and generalization
across materials, as well as faster inference time compared to Cluster Expansion.

In the next phase of our work, we plan to undertake the final evaluation of numerous
force field models - both universal and material specific - which have been developed.
Further investigation is also required to understand the reasons behind the failure of
certain models, such as the models trained on the IrRuS2 dataset for ecut = 0.01 when
trained separately. Additionally, we will be actively investigating the factors contributing
to the suboptimal performance for the MACE models when utilized as a Universal Force
Field and M3GNet used as a transfer model.

While this thesis provides some insights into suitable parameter choices, a more thorough
analysis of the effectiveness of a smaller cutoff parameter, for example, still awaits. Further
works could also focus on implementing sensible cutoffs for our energy and area model
deviations from DFT after the relaxation. This would alleviate some of the ’outliers’ or
unsuccessful relaxations seen in some of our results. Additionally, one could consider
benchmarking other machine learning force field architectures.

We hope that with our results we can inspire further works in creating better universal
and material-specific force fields, opening the doors to hopefully getting us one step closer
to resolving the century-long quest initially embarked on by Dirac.
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Chapter 6

Appendix

6.1 Convex Optimization

For many machine learning models the optimisation criterion is convex which makes the
optimisation a lot easier since the convex functions only have a single global minima and
not potentially many local minima as for non-convex functions (i.e every local minimum
is a global minima).

Optimisation criterion’s for neural networks are often not convex but in practice often
local minima’s suffice. Recall that a convex function satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (6.1)

with 0 ≤ λ ≤ 1 and x,y ∈ S. They are often not complex because one can show that in
general a function f is convex iff the Hessian H = ∇2f(x) is positive semi-definite and
strictly convex if H positive definite. So we require the Hessian of the loss function L(θ)
to be positive definite to have a convex optimisation problem.

In principle here we start at some random point and hope that we can end up in a useful
minima. In practice this is not always as easy as it sounds.
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Figure 6.1: Example Structure Sn4Br8. We see the periodicity in the x and y direction
while there is no periodicity in the z direction. This is a supercell consisting of 3 units
cells in x and y direction.
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Figure 6.2: Distribution over energies, stresses and forces for the 2D Dataset. Note the
logarithmic scaling of the y-axis for both forces and stresses.
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Figure 6.3: Chemical element distribution of all geometry optimization steps for the
two-dimensional extended compound dataset.
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Figure 6.4: Distribution of the mean absolute error (MAE) in the validation data for (a)
energy and (b) area, categorized by chemical elements in the periodic system. This is
using the M3Gnet model with a learning rate lr = 1× 10−3 and a batch size of bs = 128.
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Figure 6.5: Distribution of the mean absolute error (MAE) in the validation data for (a)
energy and (b) area, categorized by chemical elements in the periodic system. This is
using the M3Gnet model with a learning rate lr = 1× 10−3 and a batch size of bs = 128.
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Figure 6.6: Space group energy MAE distribution of test set for model lr1e-4bs128 with
ecut = 1000000. We find an exceedingly large energy error resulting from structures
belonging to the hexagonal space group Amm2.

Alloy System Cutoff = 0.01
lr=1e-3, normal lr=1e-3, transfer

IrRuS2
Energy 17.65 61.11
Area 2.19 25.30

MoTaS2
Energy 2.44 1.41

Area 0.36 0.51

MoWS2
Energy 0.62 0.38

Area 0.52 1.03

NbMoS2
Energy 4.02 1.47

Area 0.33 0.31

TiNbS2
Energy 19.03 53.52
Area 1.86 52.68

TiTaS2
Energy 7.85 31.79
Area 33.45 41.38

TiVS2
Energy 16.33 43.06
Area 0.47 43.54

ZrTaS2
Energy 7.30 39.02
Area 0.51 42.88

Table 6.1: Relaxation for M3GNet for datasplit 9055 with batch size 128 on the two-
dimensional alloy dataset. The transfer model used here is the UFF trained on all two-
dimensional data with lr=1e-4 and bs=128. The relaxations were performed using the
validation set. The energies are given in units of meV/atom and the area in units of
Å2
/atom× 100
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Figure 6.7: Distribution of the mean absolute error (MAE) for (a) energy and (b) area,
categorized by chemical elements in the periodic system. These errors are obtained by
using the Mace model with a learning rate lr = 1 × 10−3 and a batch size of bs = 64 to
relax the test data.
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Figure 6.8: Test set MAE errors for (a) energy (b) area of MACE model lr = 0.003, bs = 128
and (c) energy and (d) area of model lr = 1 × 10−3, bs = 64. From plot (c) we observe
one clear outlier in the model.
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Figure 6.9: Training curves for UFF Mace models on the two-dimensional data with
ecut = 1000000.
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Figure 6.10: Alloy dataset chemical element distribution.

C
m

c2
_1

Im
a2

P2
_1

P-
6m

2

P-
6

Pm
c2

_1

Fm
m

2

C
m

m
2P2

P2
_1

/m

P2
/m

Im
m

2

Pm
m

2

C
2/

m C
2

Am
m

2

Pm C
mP-
1P1

International Spacegroup Symbol

101

103

C
ou

nt

tr
ic

lin
ic

46,008 (57%)

m
on

oc
lin

ic

23,394 (29%)

or
th

or
ho

m
bi

c

9,750 (12%)

tr
ig

on
al

368 (0%)

he
xa

go
na

l

572 (1%)

Figure 6.11: Distribution of space group symmetries for the alloy dataset.

NbMoS2 MoWS2 MoTaS2 TiTaS2

DFT 1.23 0.13 0.28 3.42
ML 1 3.08 0.17 0.39 4.48
ML 2 1.64 0.12 0.63 3.48

Table 6.2: Formation energy MAE [meV] for the validation set. ML1 Model from which
the relaxed structures are used from is the MACE 801010 normal training lr=0.003, bs=16
model. ML 2 is MACE transfer model with 801010 ecutoff = 1000000 and lr=0.0001 and bs
= 16. The model here used with that data is a NEQUIP model with a lr=0.0075 and bs=16.
The energy MAE errors are given in units of meV.
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Figure 6.13: Energy distributions alloys
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Figure 6.14: Line plot for M3GNet with datasplit=9055, normal training, cutoff = 0.01, lr
= 0.001, bs=128
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Figure 6.15: Error distribution and cumulative error histograms for M3GNet model with
datasplit=9055, cutoff = 0.01, normal learning, lr=0.001, bs=128.
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Figure 6.16: Line plot for M3GNet with datasplit=9055, transfer training, cutoff = 0.01,
lr=0.001, bs=128
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Figure 6.17: Error distribution and cumulative error histograms for M3GNet model with
datasplit=9055, cutoff = 0.01, transfer learning, lr=0.001, bs=128.
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Figure 6.18: (a) Energy MAE (b) Area MAE for normally trained M3GNet model with
cutoff 0.01 on the complete alloy dataset. Similarly for (c) and (d) we have the energy and
area MAE for the transfer learned model lr1e-3bs128 from the UFF model lr1e-4bs128.
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(a) Line plot for MACE with datasplit=801010, normal training, cutoff = 0.001, lr = 0.003, bs=16.
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Figure 6.20: Error distribution and cumulative error histograms for MACE model with
datasplit=801010, cutoff = 0.001, normal learning, lr=0.003, bs=16.
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(a) Line plot for MACE with datasplit=801010, transfer training, cutoff = 0.001, lr = 0.0001, bs=16.
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Figure 6.22: Error distribution and cumulative error histograms for MACE model with
datasplit=801010, cutoff = 0.001, transfer learning, lr=0.0001, bs=16.
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(a) Line plot for MACE with datasplit=9055, normal training, cutoff = 0.001, lr = 0.003, bs=16.
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Figure 6.24: Error distribution and cumulative error histograms for MACE model with
datasplit=9055, normal learning, lr=0.03, bs=16.
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(a) Line plot for MACE with datasplit=9055, transfer training, cutoff = 0.001, lr = 0.0001, bs=16.
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Figure 6.26: Error distribution and cumulative error histograms for MACE model with
datasplit=9055, transfer learning, lr=0.03, bs=16.
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