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1 | Theory

1.1 Tight-binding model

In solid-state theory, there exist a plethora of models to describe the interactions of electrons
and their respective atoms on a lattice. In this thesis we will mainly be considering the so-called
tight-binding model in which the electrons are, in contrast to the free-electron model, modeled
to be closely bound to their respective atoms. For a theoretical model, this has the useful
consequence, that the interaction of other atoms in the crystal lattice with those tightly bound
electrons, can be regarded as negligible. This tight-binding of the electrons motivates describing
the electronic states as atomic orbital wave functions ϕA(r), rather than the commonly used
plane waves exp(ik · r) in the free-electron model. Since the electrons are strongly localized to
their respective atom, the atomic overlap of the atom wave functions of different atoms in the
crystal lattice is therefore expected to be rather small [16, 23].

It should be noted that the tight-binding approximation is mainly employed for describing
low-lying electron energy states (i.e s- or p-orbitals) due to their lower spatial extension. In this
regime, the atomic potential plays the vital role in determining the spectrum of our Hamiltonian
and the atomic Hamiltonian for an isolated atom at position R is given by:

ĤA(r−R) = − ℏ2

2m
∇2 + VA(r−R) (1.1)

where r−R originates due to the dependence of the rotationally symmetric potential VA on the
distance of the electron r of the position of the nucleus R. The atomic Hamiltonian fulfills the
following eigenvalue equation:

ĤA |i,R⟩ = EiA |i,R⟩ (1.2)

where we denote |i,R⟩ to be the i-th energy state for the atom at lattice position R with the
atomic orbital wave function:

⟨r|i,Rj⟩ = ψiA(r−R) (1.3)

Consequently, in the absence of any other atoms, the electrons bind with eigenstates ψiA(r−R),
with energy EiA < 0 to the atom1.

Our interest however lies in modeling a lattice of well separated atoms rather than a single
isolated atom. To this end we extend our definition of the rotationally symmetric atomic potential
VA to account for a lattice of atoms:

Vlattice(r) =
∑
Ri

VA(r−Ri) (1.4)

Furthermore extending our Hamiltonian to include the coulomb interaction of the electron at
position r with the nucleus of atoms at all possible position Ri of the crystal lattice, we obtain:

Ĥ = − ℏ2

2m
∇2 +

∑
Rj

VA(r−Rj) = ĤA +∆VRj (1.5)

where in the second step we split the single atomic potential (1.1) from the correction term:

∆VRj (r) =
∑

Ri ̸=Rj

VA(r−Ri) (1.6)

1In analogy to the potential, the eigenstates are functionally dependent on r−R
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Chapter 1. Theory § 1. Tight-binding model

Since the electrons at the different positions of the atoms are mostly localized (this refers to the
electronic eigenfunctions ψiA(r) having a very small probability one lattice site away) and mainly
interact with the closest atom, the correction term ∆V in the tight-binding approximation can be
seen as a small perturbation of the atomic potential at position Rj due to the coulomb repulsion
with the other atoms at the remaining sites Ri, meaning close to each lattice point, the governing
Hamiltonian is (1.1) and, as already established, ψiA(r −R) is a good approximation for low
lying electronic energy state. This consequently motivates the use of a linear combination of
atomic orbitals (LCAO):

ψik(r) =
1√
N

∑
Rj

eik·RjψiA(r−Rj) (1.7)

where the normalized coefficient function in front of the atomic orbitals is obtained with the help
of Bloch’s theorem, stating that in a translationally symmetric system2, the following holds:

ψik(r+Rj) = eik·Rjψik(r) (1.8)

Electrons which are strongly bound to the atoms, i.e the ones with large binding energies,
correspond to low lying energy states, which form the discrete spectrum shown in 1.1 will remain
close to their host atoms. Those at higher energies, are more weakly bound and will be closer to
free particles and have a chance to tunnel to neighboring atoms due to an overlap of the wave
function with a neighboring atomic orbital. The weakly bound electrons which become dislodged
from their host atoms are called valence electrons (the same electrons which typically sit in the
outer shells) [25][24][8]. Instead of labelling our energy states with the index i we will use a

<latexit sha1_base64="tvgzk2rCa6PC37xIyUcUm2lKK+Y=">AAAB9HicbVDLSgMxFL3xWeur6tJNsAh1U2ZU1GXRjcsK9gHtUDJppg3NZMYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JPjx4Jr4zjfaGV1bX1js7BV3N7Z3dsvHRw2dZQoyho0EpFq+0QzwSVrGG4Ea8eKkdAXrOWP7jK/NWZK80g+mknMvJAMJA84JcZKXrPSDYkZ+kGqpme9UtmpOjPgZeLmpAw56r3SV7cf0SRk0lBBtO64Tmy8lCjDqWDTYjfRLCZ0RAasY6kkIdNeOgs9xadW6eMgUvZJg2fq742UhFpPQt9OZhH1opeJ/3mdxAQ3XsplnBgm6fxQkAhsIpw1gPtcMWrExBJCFbdZMR0SRaixPRVtCe7il5dJ87zqXlUvHi7Ltdu8jgIcwwlUwIVrqME91KEBFJ7gGV7hDY3RC3pHH/PRFZTvHMEfoM8fbNGR4w==</latexit>

V (r)

<latexit sha1_base64="WliXF+jsk2xsXLTUKrWeQDrj4Xg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1ItQ9OKxgmkLbSib7bRdutmE3Y1QQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFyaCa+O6305hZXVtfaO4Wdra3tndK+8fNHScKoY+i0WsWiHVKLhE33AjsJUopFEosBmO7qZ+8wmV5rF8NOMEg4gOJO9zRo2VfE5uiNctV9yqOwNZJl5OKpCj3i1/dXoxSyOUhgmqddtzExNkVBnOBE5KnVRjQtmIDrBtqaQR6iCbHTshJ1bpkX6sbElDZurviYxGWo+j0HZG1Az1ojcV//PaqelfBxmXSWpQsvmifiqIicn0c9LjCpkRY0soU9zeStiQKsqMzadkQ/AWX14mjbOqd1k9f7io1G7zOIpwBMdwCh5cQQ3uoQ4+MODwDK/w5kjnxXl3PuatBSefOYQ/cD5/AHApjcs=</latexit>

i = 1

<latexit sha1_base64="eMabqYvHgyKtkfT2vB5av8dHD4o=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtRb0IRS8eK9gPaJeSTbNtaJJdkqxQlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxlfueJKs0i+WimMfUFHkkWMoJNJjF0UxuUK27VnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSrlW9y+rFQ73SuM3jKMIJnMI5eHAFDbiHJrSAwBie4RXeHOG8OO/Ox6K14OQzx/AHzucPG12Nog==</latexit>

i = 2

<latexit sha1_base64="CoJIcMUZNMMVFd+IjkJTYYZJOco=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1ItQ9OKxgmkLbSib7aRdutmE3Y1QSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+O6305hZXVtfaO4Wdra3tndK+8fNHSSKYY+S0SiWiHVKLhE33AjsJUqpHEosBkO76Z+8wmV5ol8NKMUg5j2JY84o8ZKPic35LxbrrhVdwayTLycVCBHvVv+6vQSlsUoDRNU67bnpiYYU2U4EzgpdTKNKWVD2se2pZLGqIPx7NgJObFKj0SJsiUNmam/J8Y01noUh7YzpmagF72p+J/Xzkx0HYy5TDODks0XRZkgJiHTz0mPK2RGjCyhTHF7K2EDqigzNp+SDcFbfHmZNM6q3mX1/OGiUrvN4yjCERzDKXhwBTW4hzr4wIDDM7zCmyOdF+fd+Zi3Fpx85hD+wPn8AXMxjc0=</latexit>

i = 3

<latexit sha1_base64="YxATcMpO4Gg+Q5OmYuobd+2S5UY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qBeh6MVjBdMW2lA220m7dLMJuxuhlP4GLx4U8eoP8ua/cdvmoNUHA4/3ZpiZF6aCa+O6X05hZXVtfaO4Wdra3tndK+8fNHWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmd+6xGV5ol8MOMUg5gOJI84o8ZKPifXpNYrV9yqOwf5S7ycVCBHo1f+7PYTlsUoDRNU647npiaYUGU4EzgtdTONKWUjOsCOpZLGqIPJ/NgpObFKn0SJsiUNmas/JyY01noch7Yzpmaol72Z+J/XyUx0FUy4TDODki0WRZkgJiGzz0mfK2RGjC2hTHF7K2FDqigzNp+SDcFbfvkvaZ5VvYvq+X2tUr/J4yjCERzDKXhwCXW4gwb4wIDDE7zAqyOdZ+fNeV+0Fpx85hB+wfn4BnS1jc4=</latexit>

i = 4

<latexit sha1_base64="LlxcJX4OweiygWgFv/aV6hxcO8Q=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegCB4TMA9IljA76SRjZmeXmVkhLPkCLx4U8eonefNvnCR70MSChqKqm+6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPR7dRvPqHSPJIPZhyjH9KB5H3OqLFS7a5bLLlldwayTLyMlCBDtVv86vQiloQoDRNU67bnxsZPqTKcCZwUOonGmLIRHWDbUklD1H46O3RCTqzSI/1I2ZKGzNTfEykNtR6Hge0MqRnqRW8q/ue1E9O/9lMu48SgZPNF/UQQE5Hp16THFTIjxpZQpri9lbAhVZQZm03BhuAtvrxMGmdl77J8XrsoVW6yOPJwBMdwCh5cQQXuoQp1YIDwDK/w5jw6L8678zFvzTnZzCH8gfP5A5uJjNE=</latexit>

E

<latexit sha1_base64="xmojLQ+M/qn/DUDgLwAqtYSOtcE=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69BIvgqSQq6rHoxWOFfkEbyma7bZduNmF3Uiyh/8SLB0W8+k+8+W/ctDlo64OBx3szuzMviAXX6LrfVmFtfWNzq7hd2tnd2z+wD4+aOkoUZQ0aiUi1A6KZ4JI1kKNg7VgxEgaCtYLxfea3JkxpHsk6TmPmh2Qo+YBTgkbq2XYX2ROm9UTK7I3hrGeX3Yo7h7NKvJyUIUetZ391+xFNQiaRCqJ1x3Nj9FOikFPBZqVuollM6JgMWcdQSUKm/XS++cw5M0rfGUTKlERnrv6eSEmo9TQMTGdIcKSXvUz8z+skOLj1Uy7jBJmki48GiXAwcrIYnD5XjKKYGkKo4mZXh46IIhRNWCUTgrd88ippXlS868rl41W5epfHUYQTOIVz8OAGqvAANWgAhQk8wyu8Wan1Yr1bH4vWgpXPHMMfWJ8/Vw6UIA==</latexit>

Tunneling

<latexit sha1_base64="njySIqNM69I+CXFnOBJs3serMX8=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIdVMSFXVZdeOyin1AE8NkMm3HTmbCzEQoIW78FTcuFHHrX7jzb5y2WWjrgQuHc+7l3nuCmBKpbPvbKMzNLywuFZdLK6tr6xvm5lZT8kQg3ECcctEOoMSUMNxQRFHcjgWGUUBxKxhcjvzWAxaScHarhjH2IthjpEsQVFryzR03lsRPz7O7lGQVN+A0TG8y//7AN8t21R7DmiVOTsogR903v9yQoyTCTCEKpew4dqy8FApFEMVZyU0kjiEawB7uaMpghKWXjj/IrH2thFaXC11MWWP190QKIymHUaA7I6j6ctobif95nUR1z7yUsDhRmKHJom5CLcWtURxWSARGig41gUgQfauF+lBApHRoJR2CM/3yLGkeVp2T6tH1cbl2kcdRBLtgD1SAA05BDVyBOmgABB7BM3gFb8aT8WK8Gx+T1oKRz2yDPzA+fwCjYZcD</latexit>

 i
A(Rj)

<latexit sha1_base64="hVaYr1CPOfq30p+OVADvLA0Lm9Y=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZRERV1W3bisYh/QxDCZTNqhk0yYmQglxI2/4saFIm79C3f+jdM2C209cOFwzr3ce4+fMCqVZX0bc/MLi0vLpZXy6tr6xqa5td2SPBWYNDFnXHR8JAmjMWkqqhjpJIKgyGek7Q+uRn77gQhJeXynhglxI9SLaUgxUlryzF0nkdTLLvL7jOZVx+csyG5zjx56ZsWqWWPAWWIXpAIKNDzzywk4TiMSK8yQlF3bSpSbIaEoZiQvO6kkCcID1CNdTWMUEelm4w9yeKCVAIZc6IoVHKu/JzIUSTmMfN0ZIdWX095I/M/rpio8dzMaJ6kiMZ4sClMGFYejOGBABcGKDTVBWFB9K8R9JBBWOrSyDsGefnmWtI5q9mnt+OakUr8s4iiBPbAPqsAGZ6AOrkEDNAEGj+AZvII348l4Md6Nj0nrnFHM7IA/MD5/AKHclwI=</latexit>

 i
A(Ri)

<latexit sha1_base64="BD6mSUIaKNTNsjx18LT32r4wNZs=">AAACAnicbVDLSgNBEJz1GeMr6km8DAbBU9hVUY9RLx6jmAckIczOziZDZmeWmV4xLIsXf8WLB0W8+hXe/Bsnj4MmFjQUVd10d/mx4AZc99uZm19YXFrOreRX19Y3Ngtb2zWjEk1ZlSqhdMMnhgkuWRU4CNaINSORL1jd718N/fo904YreQeDmLUj0pU85JSAlTqF3RawB0gvQEWYAM5avhJBept1eKdQdEvuCHiWeBNSRBNUOoWvVqBoEjEJVBBjmp4bQzslGjgVLMu3EsNiQvuky5qWShIx005HL2T4wCoBDpW2JQGP1N8TKYmMGUS+7YwI9My0NxT/85oJhOftlMs4ASbpeFGYCAwKD/PAAdeMghhYQqjm9lZMe0QTCja1vA3Bm355ltSOSt5p6fjmpFi+nMSRQ3toHx0iD52hMrpGFVRFFD2iZ/SK3pwn58V5dz7GrXPOZGYH/YHz+QN2hJd7</latexit>

Atom at Ri

<latexit sha1_base64="9Yu1LH3ppaG7Jf1CRDYTSy0HuGo=">AAACAnicbVBNS8NAEN3Ur1q/qp7Ey2IRPJVERT1WvXisYj+gKWWz2bRrN9mwOxFLKF78K148KOLVX+HNf+O2zUFbHww83pthZp4XC67Btr+t3Nz8wuJSfrmwsrq2vlHc3KprmSjKalQKqZoe0UzwiNWAg2DNWDESeoI1vP7lyG/cM6W5jG5hELN2SLoRDzglYKROcccF9gDpOcgQE8BD15PCT2+GnbtOsWSX7THwLHEyUkIZqp3il+tLmoQsAiqI1i3HjqGdEgWcCjYsuIlmMaF90mUtQyMSMt1Oxy8M8b5RfBxIZSoCPFZ/T6Qk1HoQeqYzJNDT095I/M9rJRCctVMexQmwiE4WBYnAIPEoD+xzxSiIgSGEKm5uxbRHFKFgUiuYEJzpl2dJ/bDsnJSPro9LlYssjjzaRXvoADnoFFXQFaqiGqLoET2jV/RmPVkv1rv1MWnNWdnMNvoD6/MHeAiXfA==</latexit>

Atom at Rj

<latexit sha1_base64="wAhlLkkYsrCuvdZ6Ov3mshW2r3U=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquinosevFYwX5Au5Rsmrah2WRJZsW69Jd48aCIV3+KN/+N2XYP2vpg4PHeDDPzwlhwA5737RRWVtfWN4qbpa3tnd2yu7ffNCrRlDWoEkq3Q2KY4JI1gINg7VgzEoWCtcLxTea3Hpg2XMl7mMQsiMhQ8gGnBKzUc8tdYI+Q1pXhmTDtuRWv6s2Al4mfkwrKUe+5X92+oknEJFBBjOn4XgxBSjRwKti01E0MiwkdkyHrWCpJxEyQzg6f4mOr9PFAaVsS8Ez9PZGSyJhJFNrOiMDILHqZ+J/XSWBwFaRcxgkwSeeLBonAoHCWAu5zzSiIiSWEavs6xXRENKFgsyrZEPzFl5dJ87TqX1TP7s4rtes8jiI6REfoBPnoEtXQLaqjBqIoQc/oFb05T86L8+58zFsLTj5zgP7A+fwBm46Ttw==</latexit>

Position

Figure 1.1: Schematic illustration of the tight-binding model

generalized quantum number denoted by lowercase greek letters, α, β, . . . to include all other
possible quantum numbers that uniquely determine an atomic orbital eigenstate (in the case of a
hydrogen atom we would for example have α = (n1, l1, s1)). In Dirac notation, the LCAO ansatz
(1.7) then takes the form:

|ψαk⟩ =
1√
N

N∑
j=1

eik·Rj |α,Rj⟩ (1.9)

Since the pre-factor is simply a phase, computing the matrix elements of the Hamiltonian with
|ψαk⟩ boils down to finding the explicit matrix form of:

⟨α,Rj |Ĥ|β,Ri⟩ = Eαδα,βδRj ,Ri + ⟨α,Rj |∆V̂Rj |β,Ri⟩ (1.10)
2Due to the fact that the Potential is assumed to be periodic, i.e V (r+ aei) = V (r)
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Chapter 1. Theory § 1. Tight-binding model

In further considerations of the tight-binding model we will consider a single orbital for each
atom on the lattice (for example the s-orbital) and neglect the irrelevant global diagonal energy
shift resulting from the first term. If we consider a trivially spin-degenerate system, we can
drop the index α and aim to focus entirely on the overlap integral or hopping matrix elements
⟨Rj |∆VRj |Ri⟩ [23, 16].

1.1.1 Tight-binding model in second quantized formalism

Instead of working in first quantized form, it is beneficial to instead work in second quantized
form. In second quantization the state of the lattice is expressed in terms of the occupation
number of electrons at a given site. For a lattice with N sites labeled by the lattice vectors
Rj with j = 1, . . . N we have the occupation number representation |n1, . . . nN ⟩. We define
the fermionic creation- ĉ†Rj

and annihilation ĉRj operators in position space which create or
annihilate a particle in the j-th site in a given orbital (we again assume we have a single orbital),
which satisfy the fermionic anti-commutation relations

{ĉRj , ĉ
†
Ri

} = δij and {ĉRj , ĉRi} = {ĉ†Rj
, ĉ†Ri

} = 0 (1.11)

We note that the electron state depends mostly on the Fourier pre-factor

ϕj =
1√
N
eik·Rj (1.12)

rather than the explicit form of the orbital, which means our study will mainly involve ϕj . It
should however always remembered that the exact electron state is given by the product of ϕj
with the orbital at the position Rj . In position space, the tight-binding Hamiltonian in second
quantization is then given by:

Ĥtight-binding =
∑
j

E0ĉ
†
Rj
ĉRj +

∑
Ri,Rj

tij ĉ
†
Ri
ĉRj + h.c (1.13)

The ’h.c’ in this case denotes the hermitian conjugate, i.e the adjoint operator. The matrix
elements tij = tji are referred to as hopping elements where t2ij determines the probability that
an electron on site i hops to site j and is of the dimension of energy. The hermitian conjugate
then describes the inverse operation, i.e the annihilation of the electron at position Ri and
subsequently a creation of the electron at site Rj . Since the operator product ĉ†i ĉj annihilates an
electron on site Rj and creates one on site Ri, it represents the kinetic energy of the electron.
Instead of considering all possible interactions with the potentials at all sites, we want to restrict
ourselves to identical nearest neighbor interactions at every position Rj , meaning we set:

tij = ⟨Rj |∆V̂Rj |Rl⟩ =
{
−t if Rj and Ri are nearest neighbors
0 otherwise

(1.14)

and the Hamiltonian (1.13), without the irrelevant global energy shift, takes the following form:

Ĥtight-binding = −t
∑

⟨Rj ,Ri⟩

ĉ†Rj
ĉRi + h.c = − t

2

∑
j

∑
δ

(ĉ†j ĉj+δ + ĉ†j+δ ĉj) (1.15)

where in the second step we expanded the nearest neighbor sum ⟨Rj ,Ri⟩ and included the factor
1/2 to avoid double counting. For a d-dimensional Bravais lattice without diagonal hoppings,∑

δ sums over all the q = 2d unique nearest neighbor vectors δ1, δ2, . . . δq for any lattice site j.

5



Chapter 1. Theory § 1. Tight-binding model

1.1.2 Momentum space representation

Instead of labeling the state of the lattice with the positions of the electrons we can also express
it with the number of electrons with a given momenta |k⟩. It should be noted, that ℏk is not
the electron moment but rather the crystal momentum, i.e the momentum of the system (for a
discussion, see for example [25], section 5.2.1). It’s better to think of it as the quantum number
which uniquely determines a Bloch state. For a second quantized operator, a change of basis
corresponds to:

ĉ†α =
∑
β

⟨β|α⟩ ĉ†β and ĉα =
∑
β

⟨α|β⟩ ĉβ (1.16)

where {|α⟩} and {|β⟩} are a full set of orthonormal basis states that span the Hilbert space. The
relevant element is the projection of the basis elements of one space onto the other, which in
case of the Fourier space results in the following inner product between basis elements:

⟨k|j⟩ = ψ∗
k(Rj) =

1√
N
e−ik·Rj and ⟨j|k⟩ = ψk(Rj) =

1√
N
eik·Rj (1.17)

where |j⟩ = ĉ†Rj
|0⟩ is the state with an electron on the j-th site. Here |0⟩ defines the vacuum state.

The creation and annihilation operators in momentum space then have following representation:

ĉk =
1√
N

∑
k

e−ik·Rj ĉRj and ĉ†k =
1√
N

∑
k

eik·Rj ĉ†Rj
(1.18)

where the sum over momentums k is taken over the first brillouin zone. In 1D, this would mean,
k = 2πn/N with n = 0, . . . , N where L = Na. The inverted expression then yields us:

ĉRj =
1√
N

∑
k

eik·Rj ĉk and ĉ†Rj
=

1√
N

∑
k

e−ik·Rj ĉ†k (1.19)

Rewriting the Hamiltonian (1.15) in terms our momentum space operators yields:

Ĥtb = − t

2N

∑
j

∑
δ,k,k′

(e−ik·Rjeik
′·(Rj+δ)ĉ†kĉk′ + e−ik

′·(Rj+δ)eik·Rj ĉ†kĉk′)

= − t

2

∑
δ,k

(eik·δ + e−ik·δ)ĉ†kĉk = − t

2

∑
δ,k

cos(k · δ)ĉ†kĉk
(1.20)

where we used the relation: ∑
k

ei(k−k′)Rj = Nδk,k′ (1.21)

The diagonalized Hamiltonian in momentum space can then be written as:

Ĥtight-binding =
∑
k

ϵkĉ
†
kĉk (1.22)

with the dispersion relation
ϵk = −t

∑
δ

cos(k · δ) (1.23)

This allows us to directly see, that the eigenstates of Ĥtb are then uniquely defined by giving the
occupation number nk = ĉ†kĉk = {0, 1} for every single particle state. The associated eigenvalue
Ea for an arbitrary state |A⟩ is then given by Ea =

∑
k ϵk with the sum running over the state in

6



Chapter 1. Theory § 1. Tight-binding model

|A⟩ for which nk = 1. For a system with a fixed number of electrons Ng, the occupation number
satisfy the constraint ∑

k

nk = Ng (1.24)

and the ground state |G⟩ corresponds to the system in which the states with the smallest energies
ϵk are filled. The k-states that will be filled are the ones up to the Fermi wavevector kF . Thus
we write the ground state generally as:

|G⟩ =
∏

k<kF

ĉ†k |0⟩ (1.25)

where |0⟩ denotes the vacuum state, i.e the state in which no electrons are present. The explicit
form of the dispersion relations is obtained, once a proper lattice structure has been determined.
In our thesis, we will consider both the one-dimensional chain and the two-dimensional square
lattice at half filling.

1.1.3 One dimensional chain

For a simple one-dimensional chain, for each lattice site, the nearest neighbor vectors are [26]

δ1 = a, and δ2 = −a (1.26)

with the lattice constant a, resulting in the following Hamiltonian in real space:

Ĥtight-binding = − t

2

N∑
j=1

(ĉ†j ĉj+a + ĉ†j+aĉj) (1.27)

The energy dispersion relation is obtained by correctly inserting the nearest neighbors into
equation (1.23):

ϵk = −t [cos(ka) + cos(−ka)] = −2t cos(ka) (1.28)

and the tight binding hamiltonian in momentum space for a single orbital is:

Ĥtight-binding = −2t
∑
k

cos(ka)ĉ†k ĉk (1.29)

Since, the dispersion relation is periodic in k → k + 2π/a, we restrict ourselves to the first
Brillouin zone. Similar to the phonon case, and unlike the free-particle model, the electrons
have a minimum and maximum energy within a given band and a vanishing group velocity at
the Brillouin zone boundary: vG = ∂E/∂k

∣∣
k=kF

= 0. If N → ∞, the wavevector k has values
from the first Brillouin zone, i.e in the range [−π/a, π/a]. The negative k vectors correspond to
electrons moving to the right, while positive k vectors correspond to electrons moving to the left
[24][25]. The dispersion relation is seen plotted in Figure 1.7.

For an even system size, the ground state |G⟩ for the chain at half filling, corresponds to the
state, in which all the first N/2 k-states are occupied:

|G⟩ =
N/2∑
k=1

ĉ†k |0⟩ (1.30)

7
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Figure 1.2: Dispersion Relation for a 2D tight binding Hamiltonian; (a) Dispersion relation for
the tight binding Hamiltonian in two-dimensions for the first Brillouin zone. Up to the blue lines
around the Energy ϵk = 0 the states are filled in the ground state. The Fermi surface separates
the occupied states from the non-occupied ones.

and the ground state energy is simply obtained by summing up all negative eigenvalues, which
for the spinless fermion model with nk = {1, 0}, corresponds to summing up to N/2:

E0 =

N/2∑
k=1

ϵk (1.31)

In our computations, we will simply set the lattice constant to be equal to a = 1 and the
tight-binding Hamiltonian takes the form:

Ĥtb = − t

2

L−1∑
j=1

[ĉ†j ĉj+1 + ĉ†j+1ĉj ] (1.32)

1.1.4 Two-dimensional square lattice

For a 2D square lattice, we have the following nearest neighbor vectors [26]:

δ1 = ax̂, δ2 = −ax̂, δ3 = aŷ, δ4 = −aŷ (1.33)

where again, a represent the lattice constant, so the energy dispersion relation (1.23) is:

ϵk = −t [cos(kxa) + cos(−kxa) + cos(kya) + cos(−kya)]
= −2t [cos(kxa) + cos(kya)]

(1.34)

and the tight-binding Hamiltonian in momentum space reads:

Ĥtb = −2t
∑
k

(cos(kxa) + cos(kya))ĉ
†
kĉk

= −2t
∑
kx,ky

(cos(kxa) + cos(kya))ĉ
†(kx, ky)ĉ(kx, ky)

(1.35)

8



Chapter 1. Theory § 2. Boundary conditions and sine-square Deformation

If we again set the lattice constant in the square lattice model to be a = 1, the tight-binding
model will take the form:

Ĥ0 =

Lx−1∑
i=1

Ly−1∑
j=1

(
− t1

2

[
ĉ†(i, j)ĉ(i+ 1, j) + ĉ†(i+ 1, j)ĉ(i, j)

]
− t2

2

[
ĉ†(i, j)ĉ(i, j + 1) + ĉ†(i, j + 1)ĉ(i, j)

] ) (1.36)

1.2 Boundary conditions and sine-square Deformation

Observables for systems in the thermodynamic limit N → ∞ are believed to be independent
on the choice of boundary conditions. In this limit, we expect macroscopic thermodynamics
to hold and all thermodynamic quantities to be only dependent on thermodynamic quantities,
such as pressure and energy. However in numerical studies, which involve finite system sizes, the
expectation values in the bulk of the system and the physical properties will crucially depend
on the choice of boundary conditions. This is due to the fact that in finite systems, boundary
conditions determine the topology of a system and the topology dictates the propagation of
particles and information [9]. Up until now, we often implicitly assumed periodic boundary
conditions, to guarantee the analytical solvability of the model. Periodic boundary conditions
are also employed, to suppress the boundary induced modulations resulting from open boundary
conditions, which often present themselves as an obstacle in obtaining the expectation values in
the bulk [10][14][6].

For the tight-binding model on a one-dimensional chain, the choice of boundary conditions, can
then for example, be introduced with the variable α = {1, 0}:

Ĥ =
L−1∑
j=1

[
− t

2
(ĉ†j ĉj+1 + ĉ†j+1ĉj)− µĉ†j ĉj

]
− αt(ĉ†Lĉ1 + ĉ†1ĉL) (1.37)

where for completeness, the chemical potential µ is also included. Open boundary conditions,
then correspond to α = 0 and periodic boundary conditions to α = 1, which we will from now on
abbreviate with OBC and PBC, respectively. Topologically this means, that periodic boundary
conditions, transform the system from a chain or cylinder to a ring or torus. The effects of
the boundary conditions on the expectation value of an observable can for example be seen by
considering the particle density ⟨nj⟩ = ⟨G|ĉ†j ĉj |G⟩ in the ground state of the one-dimensional
tight binding model at half-filling. For both OBC and PBC the relation:

Ng =
L∑
i=1

⟨nj⟩ (1.38)

always holds. However, for a translationally invariant system such as for PBC, the particle
density is furthermore, as evident in Figure 1.3b, a spatially uniform quantity corresponding
to Ng/L. Additionally, as expected for open boundary conditions, in Figure 1.3a we observe
prominent oscillations around the open edges of the system [10].

In addition to periodic boundary conditions, so-called smooth boundary conditions can be
employed, to efficiently suppress unwanted boundary effects and finite size errors resulting from
open boundary conditions [9]. Such models, are employed, when an open system is favored
such as in the density matrix renormalization group or because it allows a Floquet system to
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Figure 1.3: Occupation number ⟨nj⟩ with different total particle numbers Ng for (a) open-
boundary conditions (b) periodic boundary conditions.

be analytically solvable. One such model is the so called sine-squared deformation where an
arbitrary Hamiltonian is locally rescaled according to the function [12]:

fx = sin2
[
π

L

(
x− 1

2

)]
(1.39)

Here x denotes the local position and L the length of the system. Unlike the case with PBC, the
system with the sine-squared Hamiltonian is not translationally invariant, since it breaks the link
between the sites x = 1 and x = L. To construct the explicit form of the sine-squared deformed
Hamiltonian for a one-dimensional chain of length L, we introduce the chiral deformation [14,
12]:

Ĥ(±) = − t

2

L∑
j=1

e±iδx[ĉ†j ĉj+1 + h.c]− µ
L∑
j=1

e±iδ(x−1/2)ĉ†j ĉj (1.40)

where δ = 2π/L. Each term in the sum of the chiral Hamiltonian is the discrete Fourier
transformation of the local Hamiltonian. The sine-squared deformed tight-binding Hamiltonian
can then be constructed as follows:

ĤSSD =
1

2
Ĥ0 −

1

4

[
Ĥ(+) + Ĥ(−)

]
= − t

2

L−1∑
j=1

f

(
j +

1

2

)
[ĉ†j ĉj+1 + h.c]− µ

L∑
j=1

f(j)ĉ†j ĉj (1.41)

where f(j) corresponds to the scaling function defined in equation (1.39).

As can be seen in Fig. 1.4a, employing the sine-squared deformation to a tight-binding model
greatly reduces the boundary modulations of the bond-energy

〈
ĉ†j ĉj+1 + ĉ†j+1ĉj

〉
in the ground

state for a half filled one-dimensional chain of size L = 100. Furthermore, we observe that in the
bulk of the system, the bond strength becomes translationally invariant. By investigating the
occupation number ⟨nj⟩ = ⟨G|ĉ†j ĉj |G⟩, we further observe that the variation in the total number
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Figure 1.4: (a) Expectation Value of the Bond Energy in the Ground state with half filling as a
function of the lattice site (b) The Occupation number nj(ϵl) = |φl,i|2 as a function of the energy
index l and the lattice site close to the chemical potential µ = 0 for L = 50.

of electrons, changes the edges of the system and leaves the bulk mainly unchanged. The results
are shown in Fig. 1.4b. Interestingly, for particle numbers smaller than the system size, the
particles accumulate close to the center of the system and away from the edges. At the crossing
to particle numbers larger than the system size, the excess particles start accumulating near the
edges of the system [10].

In addition to the different effects resulting from the choice of boundary conditions, we briefly
note that they also share different finite-size error scaling behaviors. The finite size errors are
defined to be the deviation from the expectation value of an observable in the thermodynamic
limit. As was shown in Ref. [6] and Ref. [5], the finite size error correction for the ground
state energy for OBC are 1/N and 1/N2 for PBC and SSD. This means that the finite-size
corrections decreases faster for a system with periodic boundary conditions or sine-squared
deformations than with open boundary conditions. The finite size errors are therefore expected
to be negligible for the one-dimensional chain, but sizable for the square lattice model, due to the
exponentially increasing numerical cost in scaling a system to large lattice sites in two-dimensions.

1.2.1 Sine-Square Deformation in momentum space

In the k-Basis where the tight-binding Hamiltonian is diagonal, the chiral Hamiltonian takes the
form:

Ĥ(±) =
∑
k

e∓iδ/2ϵ(k ∓ δ/2)ĉ†k ĉk∓δ (1.42)

The Hamiltonian includes terms that describe momentum transfers ∆k = ±δ only for nearest
neighbor sites in k space. Due to the Pauli exclusion principle, applying this Hamiltonian on
the Fermi sea of the tight-binding model, restricts the possible momentum transfers to only
include those across the Fermi point k = ±kF . It should therefore be evident, that the chiral
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Figure 1.5: Profile of the unnormalized eigenstates |φ(l, j)|2 shown here for different energy levels
l as a function of j for the (a) tight-binding Hamiltonian (b) sine-squared deformed Hamiltonian

Hamiltonian can generate excited states of Ĥtb[10].

If however, the chemical potential µ is fined-tuned such that ϵ(kF ∓ δ/2) = 0, no active excitation
processes exist3. Then, the Fermi sea of the tight-binding model with PBC is also an exact
eigenstate of the chiral Hamiltonian [14].

More notable, it can be shown, that the Fermi sea is not only an exact eigenstate of the PBC
system, but also corresponds to the exact ground state of the SSD Hamiltonian [11][14]. This
is the reason, we observe that the SSD deformation recovers the translational symmetry of the
PBC system.

The probability distribution of the eigenfunctions |φ(l, j)|2 are shown in Fig. 1.5. As expected,
for the tight-binding model with periodic boundary conditions, the eigenfunctions are plane waves
with different crystal momenta k. For the sine-squared Hamiltonian, the wave number k is not a
good quantum number anymore, due to the mixing term in the chiral Hamiltonian. We observe,
that the eigenstates are rather a superposition of plane waves with different k values4 localized
at different locations in real space [10]. For increasing energies, the peaks of the wave packets
shift left and right until around the zero energy level ϵ = µ = 0 (which for a half filled system,
corresponds to l = 500 in Fig. 1.5b), where the packets become localized around the edges of the
system. With the help of the dispersion relation 1.7, we can conclude, that eigenstates around
the concentrated ϵ = µ = 0 level, correspond to localized edge states [10]. As was shown in [10],
the wave packets in the center have large energy and a light mass, forming the bulk of the system.
The ones at the edges have a heavy mass and can hardly move, serving as reservoir or particle
bath. This helps explains why changing the particle number incrementally around the Ng = L/2
value, only drastically changes the particle density near the system edges (as seen in Fig. 1.4b)
but maintains the optimal value5 in the bulk [10].

3In our one-dimensional numerical studies, setting µ = 0 generated such a scenario
4Also commonly referred to as a wave packet
5corresponding to the value obtained in a PBC system at the thermodynamic limit
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Figure 1.6: (a) Schematic representation of the allowed chiral Ĥ(+) (blue arrow) and anti-chiral
Ĥ(−) (green arrow) excitations in momentum space. Due to the Pauli principle these processes
are heavily restricted and only processes at the Fermi momentum kF are allowed (b) Occupation
number for the ground state at zero temperature.

In two-dimensions

The construction of the sine-squared deformed Hamiltonian in two-dimensions for a square lattice
follows analogously to the one-dimensional case with the introduction of a chiral Hamiltonian
[14]:

Ĥ(±) =
∑
r

(
− t1

2
exp(±i[δxx+ δy(y − 1/2)])

[
ĉ†(x, y)ĉ(x+ 1, y) + h.c

]
− t2

2
exp(±i[δx(x− 1/2) + δyy])

[
ĉ†(x, y)ĉ(x, y + 1) + h.c

] ) (1.43)

where t1 corresponds to the hopping in x-direction and t2 in y-direction. Similarly, the diagonal
chiral Hamiltonian in momentum space is:

Ĥ(±)
δ =

∑
k

e∓i/2(δx+δy)ϵ(k+ δ/2)ĉ†kĉk∓δ (1.44)

which again describes the active processes connecting the sites k and k± δ. The difference to
the 1d case however here is that ϵ(k+ δ/2) = 0 cannot be achieved by tuning the parameter
µ which means that the Fermi sea is only an approximate eigenstate of the chiral Hamiltonian
and an exact correspondence is only achieved in the thermodynamic limit Lx,y → ∞[14]. The
sine squared Hamiltonian in the two-dimensional case is then constructed analogously to the
one-dimensional case with ĤSSD = Ĥ0/2− [Ĥ(+) + Ĥ(−)]/4:

ĤSSD =

Lx∑
i=1

Ly∑
j=1

(
t1F

(
x+

1

2
, y

)[
ĉ†(x, y)ĉ(x+ 1, y) + ĉ†(x+ 1, y)ĉ(x, y)

]
+ t2F

(
x, y +

1

2

)[
ĉ†(x, y)ĉ(x, y + 1) + ĉ†(x, y + 1)ĉ(x, y)

] ) (1.45)

where we used to following modified function for our deformation:

F(x, y) = fx(x)fy(y) = 4 sin
(πx
L

)2
sin
(πy
L

)2
(1.46)

13



Chapter 1. Theory § 2. Boundary conditions and sine-square Deformation

−π 0 π

k

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
ε(k)

− cos(k)

µ

0 10 20 30 40 50

energy index l

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
ε(l)

µ

2

5

10

15

20 25
30

35

40

45

Figure 1.7: (left) Dispersion relation ϵ(k) = −2t cos(ka) for the tight-binding Hamiltonian for
L = 50, chemical potential µ = 0, lattice constant a = 1 and hopping parameter t = 1/2.
Represented is the half-filled ground state occupation up to the Fermi level ϵF = µ = 0 for
spinless fermions. (right) energy-eigenvalues for the sine-squared deformed Hamiltonian ĤSSD
for L = 50 and µ = 0.

This expression is best generalized as a sum over the two index coordinate tuple (i, j), as done in
equation (1.36):

ĤSSD =

Lx−1∑
i=1

Ly−1∑
j=1

(
t1F

(
i+

1

2
, j

)[
ĉ†(i, j)ĉ(i+ 1, j) + ĉ†(i+ 1, j)ĉ(i, j)

]
+ t2F

(
i, j +

1

2

)[
ĉ†(i, j)ĉ(i, j + 1) + ĉ†(i, j + 1)ĉ(i, j)

] ) (1.47)

1.2.2 Evolution of ground state from PBC to SSD

In this section, we aim to analyze how the ground state of the PBC system changes, if we apply a
sine-squared deformation, similarly to the analysis done in Ref [14]. This was done by introducing
the toy-Hamiltonian:

Ĥ(a) = (1− a)Ĥtb + aĤSSD (1.48)

with the variable parameter a = [0, 1]. For a = 0 we recover the Hamiltonian with PBC conditions
and for a = 1 we obtain the SSD Hamiltonian. For simplicity, we replace the deformation function
F(x, y) in the SSD Hamiltonian (1.45) by:

F(x, y) → F(x; a) = (1− a) + afx(x) (1.49)

where fx(x) corresponds to the function defined in equation (1.39). In Fig. 1.8a we observe that
for a half-filled one-dimensional lattice, the ground state for a = 0 is also a ground state for
a = 1. However as can be seen in 1.8b, for the two-dimensional system, this is not the case since
at around a = 0.69 we observe a level crossing over the Fermi Energy EF = µ = 0, meaning
the number of particles with E < 0 changes and the Fermi sea at a = 0 is not the ground
state for a = 1, but an excited state. Furthermore, we note, that in both one-dimension and in
two-dimension, the sine-squared deformation changes the degeneracy of the eigenstates [14].
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Figure 1.8: (a) Evolution of the energy eigenvalues for the one-dimensional lattice with L = 10,
(b) Evolution of energy eigenvalues for the two-dimensional square lattice with Lx = Ly = 5.

1.3 Time evolution and Floquet theory

In this section, we aim to introduce the Floquet framework, which will serve as the theoretical
basis, in understanding the Floquet systems treated in this thesis. In general terms, Floquet
theory investigates the behavior of quantum systems with time-dependent Hamiltonians satisfying
the periodicity constraint:

Ĥ(t) = Ĥ(t+ T ) (1.50)

Here T denotes the period of the driving cycle6. The dynamics of a quantum system are fully
captured in the time-dependent Schrödinger equation:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ (1.51)

which can analogously be written in terms of the time-evolution operator Û(t, t0):

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ (1.52)

The periodicity of the Hamiltonian is equivalent to the time-evolution operator satisfying:

Û(t+ T, t0 + T ) = Û(t, t0) (1.53)

In the following, we will simply notation by choosing t0 = 0 and setting Û(t, t0) = Û(t). In
general, the time-dependent Hamiltonian will not commute with itself at different times, i.e
[Ĥ(t), Ĥ(t′)] ̸= 0 and the time-evolution operator has to be written as a time-ordered series7:

Û(t) = T exp

(
− i

ℏ

∫ t

t0

dt′Ĥ(t′)

)
= 1+

(
− i

ℏ

)∫ t

t0

dt1Ĥ(t1) +

(
− i

ℏ

)2 ∫ t

t0

dt1Ĥ(t1)

∫ t1

t0

dt2Ĥ(t2) + . . .

(1.54)

6Evidently, all Floquet systems are therefore invariant under time translation
7Also referred to as Dyson expansion
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where T stands for the time-ordered product. This guarantees that the n-th term in the
Dyson expansion corresponds to the ordered product Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) of non-commuting
Hamiltonians [21].
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2 | Floquet system in one-dimension

Floquet systems have become a popular way to study statistical dynamics beyond equilibrium [1].
However, very few analytically solvable Floquet systems are available and the setting necessary
for the formation of phases is not well understood. Generally, the periodic driving of a Floquet
system, results in heating up the system towards a featureless infinite temperature state in which
no notion of distinct phases can be observed [20].

One analytically solvable Floquet system with a novel phase structure was proposed in a Paper
published by Wen and Wu in 2018 [27], in which the Floquet dynamics of the system were
captured by a (1 + 1)-dimensional (periodically bulk driven) conformal field theory. On a lattice,
such a system is best modeled with the free fermion chain at half filling and the time-dependent
Hamiltonian:

Ĥ(t) =


Ĥ1 =

L−1∑
i=1

sin2
(
π(i+ 1/2)

L

)[
ĉ†ici+1 + ĉ†i+1ĉi

]
0 < t < T1

Ĥ0 =
1

2

L−1∑
i=1

[ĉ†i ĉi+1 + ĉ†i+1ĉi + α(ĉ†Lĉ1 + ĉ†1ĉL)] T1 < t < T1 + T0

(2.1)

where the transition amplitude is set to t = 1 and α = {1, 0} determines the imposed boundary
condition. The initial state of the system is chosen to be the ground state |G⟩ of Ĥ0. Then for
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<latexit sha1_base64="Ob5ZXB9qHkyr/iYjB8xXlNKR0Y8=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIjHxRHaJUY9ELx4xkUcCGzI7NDBhdnad6SWSDd/hxYPGePVjvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6nfnNMWgjIvWAkxj8kA2U6AvO0Ep+B+EJU4oiBDrtFktu2Z2DrhIvIyWSodYtfnV6EU9CUMglM6btuTH6KdMouIRpoZMYiBkfsQG0LVUsBOOn86On9MwqPdqPtC2FdK7+nkhZaMwkDGxnyHBolr2Z+J/XTrB/7adCxQmC4otF/URSjOgsAdoTGjjKiSWMa2FvpXzINONocyrYELzll1dJo1L2LsuV+4tS9SaLI09OyCk5Jx65IlVyR2qkTjh5JM/klbw5Y+fFeXc+Fq05J5s5Jn/gfP4ArcqSCw==</latexit>

time

<latexit sha1_base64="n+affhJBo61V1u5AV4hMdV4ch2I=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiQxtHVXdOOyYl/QhjKZTtqhkwczE6GEfoIbF4q49Yvc+TdO2goqeuDC4Zx7ufceP+FMKsv6MApr6xubW8Xt0s7u3v5B+fCoI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+9Dr3u/dUSBZHLTVLqBficcQCRrDS0l1raA/LFcu8rFcdt4os07JqtmPnxKm5Fy6ytZKjAis0h+X3wSgmaUgjRTiWsm9bifIyLBQjnM5Lg1TSBJMpHtO+phEOqfSyxalzdKaVEQpioStSaKF+n8hwKOUs9HVniNVE/vZy8S+vn6qg7mUsSlJFI7JcFKQcqRjlf6MRE5QoPtMEE8H0rYhMsMBE6XRKOoSvT9H/pOOYdtV0bt1K42oVRxFO4BTOwYYaNOAGmtAGAmN4gCd4NrjxaLwYr8vWgrGaOYYfMN4+ATcxjcU=</latexit>

T1

<latexit sha1_base64="l2UQtg+9sGYUGeEhfg9JUjNa5jI=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgKcwEyeMW9OIxYmICyRJmJ7PJkNkHM7NCWPIJXjwo4tUv8ubfOJtEUNGChqKqm+4uL5ZCG4w/nNza+sbmVn67sLO7t39QPDy601GiGO+wSEaq51HNpQh5xwgjeS9WnAae5F1vepX53XuutIjCtpnF3A3oOBS+YNRY6bY9xMNiCZcxxoQQlBFSq2JLGo16hdQRySyLEqzQGhbfB6OIJQEPDZNU6z7BsXFTqoxgks8Lg0TzmLIpHfO+pSENuHbTxalzdGaVEfIjZSs0aKF+n0hpoPUs8GxnQM1E//Yy8S+vnxi/7qYijBPDQ7Zc5CcSmQhlf6ORUJwZObOEMiXsrYhNqKLM2HQKNoSvT9H/5K5SJtVy5eai1LxcxZGHEziFcyBQgyZcQws6wGAMD/AEz450Hp0X53XZmnNWM8fwA87bJyKUjbg=</latexit>

T0

<latexit sha1_base64="nqepoHNOmX2IfXGPG9iHmPJNFLU=">AAAB8XicbVDLSgMxFL1TX7W+Rl26CRbBVZkpoi6LblxWsA9sh5JJM21oJhmSjKUM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nTDjTxvO+ncLa+sbmVnG7tLO7t3/gHh41tUwVoQ0iuVTtEGvKmaANwwyn7URRHIectsLR7cxvPVGlmRQPZpLQIMYDwSJGsLHSY7cvxwIrJcc9t+xVvDnQKvFzUoYc9Z77ZcMkjakwhGOtO76XmCDDyjDC6bTUTTVNMBnhAe1YKnBMdZDNN56iM6v0USSVfcKgufo7keFY60kc2skYm6Fe9mbif14nNdF1kDGRpIYKsvgoSjkyEs3OR32mKDF8YgkmitldERlihYmxJZVsCf7yyaukWa34l5Xq/UW5dpPXUYQTOIVz8OEKanAHdWgAAQHP8ApvjnZenHfnYzFacPLMMfyB8/kDAWWRJA==</latexit># <latexit sha1_base64="nqepoHNOmX2IfXGPG9iHmPJNFLU=">AAAB8XicbVDLSgMxFL1TX7W+Rl26CRbBVZkpoi6LblxWsA9sh5JJM21oJhmSjKUM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nTDjTxvO+ncLa+sbmVnG7tLO7t3/gHh41tUwVoQ0iuVTtEGvKmaANwwyn7URRHIectsLR7cxvPVGlmRQPZpLQIMYDwSJGsLHSY7cvxwIrJcc9t+xVvDnQKvFzUoYc9Z77ZcMkjakwhGOtO76XmCDDyjDC6bTUTTVNMBnhAe1YKnBMdZDNN56iM6v0USSVfcKgufo7keFY60kc2skYm6Fe9mbif14nNdF1kDGRpIYKsvgoSjkyEs3OR32mKDF8YgkmitldERlihYmxJZVsCf7yyaukWa34l5Xq/UW5dpPXUYQTOIVz8OEKanAHdWgAAQHP8ApvjnZenHfnYzFacPLMMfyB8/kDAWWRJA==</latexit>#
<latexit sha1_base64="RfSUtu+9r3FQeZqm9xb7WQUOVCg=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj00mMF+yFtKJvtpl26m4TdiVBCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKSLeRIGSdxLNqQokbwfju5nffuLaiDh6wEnCfUWHkQgFo2ilx96IYlaf9t1+qexW3DnIKvFyUoYcjX7pqzeIWap4hExSY7qem6CfUY2CST4t9lLDE8rGdMi7lkZUceNn84On5NwqAxLG2laEZK7+nsioMmaiAtupKI7MsjcT//O6KYY3fiaiJEUescWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GRVtCN7yy6ukVa14V5Xq/WW5dpvHUYBTOIML8OAaalCHBjSBgYJneIU3RzsvzrvzsWhdc/KZE/gD5/MHklSQQw==</latexit>

Ĥ0

<latexit sha1_base64="R0NS50xbc2XMWY1OHOmenlPbvNU=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mKqMeiHnqs1H5AE8Jmu22XbjZhdyItIX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMC2LOFNj2t1HY2Nza3inulvb2Dw6PzONyR0WJJLRNIh7JXoAV5UzQNjDgtBdLisOA024wuZv73ScqFYvEI8xi6oV4JNiQEQxa8s2yO8aQNjLfBTqFtNW6z3yzYlftBax14uSkgnI0ffPLHUQkCakAwrFSfceOwUuxBEY4zUpuomiMyQSPaF9TgUOqvHRxe2ada2VgDSOpS4C1UH9PpDhUahYGujPEMFar3lz8z+snMLzxUibiBKggy0XDhFsQWfMgrAGTlACfaYKJZPpWi4yxxAR0XCUdgrP68jrp1KrOVbX2cFmp3+ZxFNEpOkMXyEHXqI4aqInaiKApekav6M3IjBfj3fhYthaMfOYE/YHx+QNTAJSh</latexit>

ĤSSD

<latexit sha1_base64="TQrqCobu5ncvZmLWiKIK24vZtRc=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXQxsIiAfMByRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0e3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7fK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpqVsndZrtQvStWbLI48nMApnIMHV1CFO6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCl04zX</latexit>

L

(a)

<latexit sha1_base64="R0NS50xbc2XMWY1OHOmenlPbvNU=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mKqMeiHnqs1H5AE8Jmu22XbjZhdyItIX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMC2LOFNj2t1HY2Nza3inulvb2Dw6PzONyR0WJJLRNIh7JXoAV5UzQNjDgtBdLisOA024wuZv73ScqFYvEI8xi6oV4JNiQEQxa8s2yO8aQNjLfBTqFtNW6z3yzYlftBax14uSkgnI0ffPLHUQkCakAwrFSfceOwUuxBEY4zUpuomiMyQSPaF9TgUOqvHRxe2ada2VgDSOpS4C1UH9PpDhUahYGujPEMFar3lz8z+snMLzxUibiBKggy0XDhFsQWfMgrAGTlACfaYKJZPpWi4yxxAR0XCUdgrP68jrp1KrOVbX2cFmp3+ZxFNEpOkMXyEHXqI4aqInaiKApekav6M3IjBfj3fhYthaMfOYE/YHx+QNTAJSh</latexit>

ĤSSD

<latexit sha1_base64="RfSUtu+9r3FQeZqm9xb7WQUOVCg=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj00mMF+yFtKJvtpl26m4TdiVBCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKSLeRIGSdxLNqQokbwfju5nffuLaiDh6wEnCfUWHkQgFo2ilx96IYlaf9t1+qexW3DnIKvFyUoYcjX7pqzeIWap4hExSY7qem6CfUY2CST4t9lLDE8rGdMi7lkZUceNn84On5NwqAxLG2laEZK7+nsioMmaiAtupKI7MsjcT//O6KYY3fiaiJEUescWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GRVtCN7yy6ukVa14V5Xq/WW5dpvHUYBTOIML8OAaalCHBjSBgYJneIU3RzsvzrvzsWhdc/KZE/gD5/MHklSQQw==</latexit>

Ĥ0

<latexit sha1_base64="n+affhJBo61V1u5AV4hMdV4ch2I=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiQxtHVXdOOyYl/QhjKZTtqhkwczE6GEfoIbF4q49Yvc+TdO2goqeuDC4Zx7ufceP+FMKsv6MApr6xubW8Xt0s7u3v5B+fCoI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+9Dr3u/dUSBZHLTVLqBficcQCRrDS0l1raA/LFcu8rFcdt4os07JqtmPnxKm5Fy6ytZKjAis0h+X3wSgmaUgjRTiWsm9bifIyLBQjnM5Lg1TSBJMpHtO+phEOqfSyxalzdKaVEQpioStSaKF+n8hwKOUs9HVniNVE/vZy8S+vn6qg7mUsSlJFI7JcFKQcqRjlf6MRE5QoPtMEE8H0rYhMsMBE6XRKOoSvT9H/pOOYdtV0bt1K42oVRxFO4BTOwYYaNOAGmtAGAmN4gCd4NrjxaLwYr8vWgrGaOYYfMN4+ATcxjcU=</latexit>

T1

<latexit sha1_base64="l2UQtg+9sGYUGeEhfg9JUjNa5jI=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgKcwEyeMW9OIxYmICyRJmJ7PJkNkHM7NCWPIJXjwo4tUv8ubfOJtEUNGChqKqm+4uL5ZCG4w/nNza+sbmVn67sLO7t39QPDy601GiGO+wSEaq51HNpQh5xwgjeS9WnAae5F1vepX53XuutIjCtpnF3A3oOBS+YNRY6bY9xMNiCZcxxoQQlBFSq2JLGo16hdQRySyLEqzQGhbfB6OIJQEPDZNU6z7BsXFTqoxgks8Lg0TzmLIpHfO+pSENuHbTxalzdGaVEfIjZSs0aKF+n0hpoPUs8GxnQM1E//Yy8S+vnxi/7qYijBPDQ7Zc5CcSmQhlf6ORUJwZObOEMiXsrYhNqKLM2HQKNoSvT9H/5K5SJtVy5eai1LxcxZGHEziFcyBQgyZcQws6wGAMD/AEz450Hp0X53XZmnNWM8fwA87bJyKUjbg=</latexit>

T0

<latexit sha1_base64="xL1cNnlB3P0N8ZvR4j2O24evfqk=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KkkR9Vj0oMcK9gPSUDbbSbt0swm7E6HU/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmiTTHBo8kYluh8yAFAoaKFBCO9XA4lBCKxzeTP3WI2gjEvWAoxSCmPWViARnaCX/id7SjmaqL6FbKrsVdwa6TLyclEmOerf01eklPItBIZfMGN9zUwzGTKPgEibFTmYgZXzI+uBbqlgMJhjPTp7QU6v0aJRoWwrpTP09MWaxMaM4tJ0xw4FZ9Kbif56fYXQVjIVKMwTF54uiTFJM6PR/2hMaOMqRJYxrYW+lfMA042hTKtoQvMWXl0mzWvEuKtX783LtOo+jQI7JCTkjHrkkNXJH6qRBOEnIM3klbw46L8678zFvXXHymSPyB87nD4kokMc=</latexit>|Gi

<latexit sha1_base64="Ob5ZXB9qHkyr/iYjB8xXlNKR0Y8=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIjHxRHaJUY9ELx4xkUcCGzI7NDBhdnad6SWSDd/hxYPGePVjvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6nfnNMWgjIvWAkxj8kA2U6AvO0Ep+B+EJU4oiBDrtFktu2Z2DrhIvIyWSodYtfnV6EU9CUMglM6btuTH6KdMouIRpoZMYiBkfsQG0LVUsBOOn86On9MwqPdqPtC2FdK7+nkhZaMwkDGxnyHBolr2Z+J/XTrB/7adCxQmC4otF/URSjOgsAdoTGjjKiSWMa2FvpXzINONocyrYELzll1dJo1L2LsuV+4tS9SaLI09OyCk5Jx65IlVyR2qkTjh5JM/klbw5Y+fFeXc+Fq05J5s5Jn/gfP4ArcqSCw==</latexit>

time

<latexit sha1_base64="n+affhJBo61V1u5AV4hMdV4ch2I=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiQxtHVXdOOyYl/QhjKZTtqhkwczE6GEfoIbF4q49Yvc+TdO2goqeuDC4Zx7ufceP+FMKsv6MApr6xubW8Xt0s7u3v5B+fCoI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+9Dr3u/dUSBZHLTVLqBficcQCRrDS0l1raA/LFcu8rFcdt4os07JqtmPnxKm5Fy6ytZKjAis0h+X3wSgmaUgjRTiWsm9bifIyLBQjnM5Lg1TSBJMpHtO+phEOqfSyxalzdKaVEQpioStSaKF+n8hwKOUs9HVniNVE/vZy8S+vn6qg7mUsSlJFI7JcFKQcqRjlf6MRE5QoPtMEE8H0rYhMsMBE6XRKOoSvT9H/pOOYdtV0bt1K42oVRxFO4BTOwYYaNOAGmtAGAmN4gCd4NrjxaLwYr8vWgrGaOYYfMN4+ATcxjcU=</latexit>

T1

<latexit sha1_base64="l2UQtg+9sGYUGeEhfg9JUjNa5jI=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgKcwEyeMW9OIxYmICyRJmJ7PJkNkHM7NCWPIJXjwo4tUv8ubfOJtEUNGChqKqm+4uL5ZCG4w/nNza+sbmVn67sLO7t39QPDy601GiGO+wSEaq51HNpQh5xwgjeS9WnAae5F1vepX53XuutIjCtpnF3A3oOBS+YNRY6bY9xMNiCZcxxoQQlBFSq2JLGo16hdQRySyLEqzQGhbfB6OIJQEPDZNU6z7BsXFTqoxgks8Lg0TzmLIpHfO+pSENuHbTxalzdGaVEfIjZSs0aKF+n0hpoPUs8GxnQM1E//Yy8S+vnxi/7qYijBPDQ7Zc5CcSmQhlf6ORUJwZObOEMiXsrYhNqKLM2HQKNoSvT9H/5K5SJtVy5eai1LxcxZGHEziFcyBQgyZcQws6wGAMD/AEz450Hp0X53XZmnNWM8fwA87bJyKUjbg=</latexit>

T0

<latexit sha1_base64="nqepoHNOmX2IfXGPG9iHmPJNFLU=">AAAB8XicbVDLSgMxFL1TX7W+Rl26CRbBVZkpoi6LblxWsA9sh5JJM21oJhmSjKUM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nTDjTxvO+ncLa+sbmVnG7tLO7t3/gHh41tUwVoQ0iuVTtEGvKmaANwwyn7URRHIectsLR7cxvPVGlmRQPZpLQIMYDwSJGsLHSY7cvxwIrJcc9t+xVvDnQKvFzUoYc9Z77ZcMkjakwhGOtO76XmCDDyjDC6bTUTTVNMBnhAe1YKnBMdZDNN56iM6v0USSVfcKgufo7keFY60kc2skYm6Fe9mbif14nNdF1kDGRpIYKsvgoSjkyEs3OR32mKDF8YgkmitldERlihYmxJZVsCf7yyaukWa34l5Xq/UW5dpPXUYQTOIVz8OEKanAHdWgAAQHP8ApvjnZenHfnYzFacPLMMfyB8/kDAWWRJA==</latexit># <latexit sha1_base64="nqepoHNOmX2IfXGPG9iHmPJNFLU=">AAAB8XicbVDLSgMxFL1TX7W+Rl26CRbBVZkpoi6LblxWsA9sh5JJM21oJhmSjKUM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nTDjTxvO+ncLa+sbmVnG7tLO7t3/gHh41tUwVoQ0iuVTtEGvKmaANwwyn7URRHIectsLR7cxvPVGlmRQPZpLQIMYDwSJGsLHSY7cvxwIrJcc9t+xVvDnQKvFzUoYc9Z77ZcMkjakwhGOtO76XmCDDyjDC6bTUTTVNMBnhAe1YKnBMdZDNN56iM6v0USSVfcKgufo7keFY60kc2skYm6Fe9mbif14nNdF1kDGRpIYKsvgoSjkyEs3OR32mKDF8YgkmitldERlihYmxJZVsCf7yyaukWa34l5Xq/UW5dpPXUYQTOIVz8OEKanAHdWgAAQHP8ApvjnZenHfnYzFacPLMMfyB8/kDAWWRJA==</latexit>#
<latexit sha1_base64="RfSUtu+9r3FQeZqm9xb7WQUOVCg=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj00mMF+yFtKJvtpl26m4TdiVBCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKSLeRIGSdxLNqQokbwfju5nffuLaiDh6wEnCfUWHkQgFo2ilx96IYlaf9t1+qexW3DnIKvFyUoYcjX7pqzeIWap4hExSY7qem6CfUY2CST4t9lLDE8rGdMi7lkZUceNn84On5NwqAxLG2laEZK7+nsioMmaiAtupKI7MsjcT//O6KYY3fiaiJEUescWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GRVtCN7yy6ukVa14V5Xq/WW5dpvHUYBTOIML8OAaalCHBjSBgYJneIU3RzsvzrvzsWhdc/KZE/gD5/MHklSQQw==</latexit>

Ĥ0

<latexit sha1_base64="R0NS50xbc2XMWY1OHOmenlPbvNU=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mKqMeiHnqs1H5AE8Jmu22XbjZhdyItIX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMC2LOFNj2t1HY2Nza3inulvb2Dw6PzONyR0WJJLRNIh7JXoAV5UzQNjDgtBdLisOA024wuZv73ScqFYvEI8xi6oV4JNiQEQxa8s2yO8aQNjLfBTqFtNW6z3yzYlftBax14uSkgnI0ffPLHUQkCakAwrFSfceOwUuxBEY4zUpuomiMyQSPaF9TgUOqvHRxe2ada2VgDSOpS4C1UH9PpDhUahYGujPEMFar3lz8z+snMLzxUibiBKggy0XDhFsQWfMgrAGTlACfaYKJZPpWi4yxxAR0XCUdgrP68jrp1KrOVbX2cFmp3+ZxFNEpOkMXyEHXqI4aqInaiKApekav6M3IjBfj3fhYthaMfOYE/YHx+QNTAJSh</latexit>

ĤSSD

<latexit sha1_base64="TQrqCobu5ncvZmLWiKIK24vZtRc=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXQxsIiAfMByRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0e3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7fK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpqVsndZrtQvStWbLI48nMApnIMHV1CFO6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCl04zX</latexit>

L

(b)

Figure 2.1: (a) Hamilton densities for the tight-binding Hamiltonian and SSD deformation (b)
The Floquet drive, where the black arrows indicate stroboscopic times.

time T1, we evolve the state with Ĥ1, followed by an evolution with Ĥ0 for time T0, to complete
one cycle T = T0+T1. For this step-wise, one cycle, driving protocol, the time-evolution operator
1.54 simplifies to the following form:

Û(T ) = T exp

(
−i
∫ T

0
Ĥ(t)dt′

)
= e−iĤ0T0e−iĤ1T1 (2.2)

The resulting time-evolved state |ψ(t)⟩ is |ψ(T )⟩ = F̂ (T ) |G⟩, where we defined the Floquet
operator F̂ (T ), which corresponds to the time-evolution operator over one period. The state
|ψ(nT )⟩ after n-cycle driving is then given by:

|ψ(nT )⟩ = F̂ (nT ) |G⟩ (2.3)

17



Chapter 2. Floquet system in one-dimension § 1. Correlation function

where similarly to 2.2, the Floquet operator is given by:

F̂ (nT ) = T exp

(
−i
∫ nT

0
Ĥ(t′)dt′

)
= e−iĤ0T0eiĤ1T1 . . . e−iĤ0T0e−iĤ1T1

=
(
e−iĤ0T0e−iĤ1T1

)n (2.4)

The dynamical characterization of the Floquet system after n-cycle driving then requires the
studying of the two-point correlation function ⟨ψ(nT )|ĉ†mĉn|ψ(nT )⟩, from which, as we will show
later, observables such as energy density, total energy and entanglement entropy can be obtained.
To obtain the two-point correlation function, we closely follow the results in [27].

2.1 Correlation function

To numerically implement the Floquet system, we require the matrix form of the Hamilton
operator Ĥ0 and Ĥ1 in the occupation number basis. We recall, that in the second quantized
formalism, a one-particle operator is defined as:

Â =
∑
µ,ν

⟨ν|Â|µ⟩ â†ν âµ (2.5)

and as such we require the evaluation of the following matrix elements:

Hmn = ⟨m|Ĥ0|n⟩ = ⟨0|ĉmĤ0ĉ
†
n|0⟩ (2.6)

where {|φm⟩} denotes the single-particle basis states. In this basis, the matrix takes the form:

Ĥ =


⟨1|Ĥ0|1⟩ ⟨1|Ĥ0|2⟩ . . . ⟨1|Ĥ0|L⟩
⟨2|Ĥ|1⟩ . . . . . .

... . . .
. . .

...
⟨L|Ĥ|1⟩

 (2.7)

Inserting the expression for our Hamiltonian with open boundary conditions:

Ĥ0 =
1

2

L−1∑
i=1

ĉ†i ĉi+1 + ĉ†i+1ĉi (2.8)

into the expression 2.6, yields:

H(0)
mn =

1

2

L−1∑
i=1

⟨0|ĉm
[
ĉ†i ĉi+1 + ĉ†i+1ĉi

]
ĉ†n|0⟩ =

1

2

L−1∑
i=1

⟨0|ĉmĉ†i ĉi+1ĉ
†
n|0⟩+ ⟨0|ĉmĉ†i+1ĉiĉ

†
n|0⟩ (2.9)

The two expectation values on the right hand side can then be evaluated with the help of the
fermionic commutation rules and the definition of the vacuum state:

• For the first term in the expression, we obtain∑
i

⟨0|ĉmĉ†i ĉi+1ĉ
†
n|0⟩ =

∑
i

⟨0|ĉmĉ†i (δi+1,n − ĉ†nĉi+1)|0⟩ (2.10)

=
∑
i

(
δi+1,n ⟨0|ĉmĉ†i |0⟩ − ⟨0|ĉmĉ†i ĉ†nĉi+1|0⟩

)
(2.11)
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Chapter 2. Floquet system in one-dimension § 1. Correlation function

where in the second step we used the anticommutator relation for the creation and annihi-
lation operators:

{ĉi+1, ĉ
†
n} = ĉi+1ĉ

†
n + ĉ†nĉi+1 ⇒ ĉi+1ĉ

†
n = {ĉi+1, ĉ

†
n}︸ ︷︷ ︸

δi+1,n

−ĉ†nĉi+1 (2.12)

Noting that the second term in 2.11 is zero due to ĉi+1 |0⟩ = 0 and that with

ĉmĉ
†
i = {ĉm, ĉ†i}︸ ︷︷ ︸

δm,i

−ĉ†i ĉm (2.13)

in analogy to 2.12, we obtain the expression

⟨0|ĉmĉ†i ĉi+1ĉ
†
n|0⟩ =

∑
i

δi+1,nδm,i = δm,n−1 (2.14)

where ⟨0|ĉ†i ĉm|0⟩ = 0, since ĉm |0⟩ = 0.

• For the second term in the expression, we proceed analogously to above. For completeness,
the steps are listed here:∑

i

⟨0|ĉmĉ†i+1ĉiĉ
†
n|0⟩ =

∑
i

⟨0|ĉmĉ†i+1

(
δi,n − ĉ†nĉi

)
|0⟩ (2.15)

=
∑
i

(
δi,n ⟨0|ĉmĉ†i+1|0⟩ − ⟨0|ĉmĉ†i+1ĉ

†
nĉi+1|0⟩︸ ︷︷ ︸

=0

)
(2.16)

Using ĉmĉ
†
i+1 = δm,i+1 − ĉ†i+1ĉm and the fact that ⟨0|ĉ†i+1ĉm|0⟩ = 0 we obtain∑

i

⟨0|ĉmĉ†i+1ĉiĉ
†
n|0⟩ =

∑
i

δi,nδm,i+1 = δm,n+1 (2.17)

Combining the results from 2.17 and 2.14, it follows that the Hamiltonoperator Ĥ0 has the
following matrix elements:

H(0)
mn =

1

2
(δm,n+1 + δm+1,n) (2.18)

and applying the same procedure, results in Ĥ1 having the following matrix elements:

H(1)
mn = sin2

(
π(n− 1/2)

L

)
δm,n−1 + sin2

(
π(n+ 1/2)

L

)
δm,n (2.19)

The matrix representation for the OBC, PBC and SSD tight-binding system are shown visually
in Fig. 2.2. In all cases, we obtain a bi-diagonal matrix1. For periodic boundary conditions, we
additionally have non-vanishing matrix elements (L, 1) and (1, L) in the upper right and lower
left corner of the matrix, resulting from the terms ⟨0|ĉmĉ†Lĉ1ĉ

†
n|0⟩ and ⟨0|ĉmĉ†1ĉLĉ†n|0⟩.

1If the diagonal elements Ej are also included, we would have a tridiagonal matrix
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Figure 2.2: Structure of the tight-binding Hamiltonian for L = 15 and (a) open-boundary
conditions (b) periodic-boundary conditions (c) sine-squared deformed.

2.1.1 Ground state

To diagonalize the matrix Ĥ0, we consider a change of basis from {|φm⟩} to some other single-
particle basis set {|ϕj⟩}. In the second quantized formalism, such a change of basis corresponds
to the following transformation operation for the creation and annihilation operators:

âj =
∑
i

⟨ϕj |φi⟩ ĉi and â†j =
∑
i

⟨φi|ϕj⟩ ĉ†i (2.20)

where âj and â†j are also fermionic operators satisfying the anti-commutation relations If we let
Ui,j = ⟨φi|ϕj⟩ denote the matrix elements of a unitary transformation, we can compactify 2.20,
as such:

âj =
∑
i

(U †)jiĉi and â†j =
∑
i

(U †)∗jiĉ
†
i =

∑
i

ĉ†iUij (2.21)

where we used U∗
ij = (U †)ji. Similarly, the inverse transformation:

ĉn =
∑
i

Uniâi and ĉ†n =
∑
i

â†iU
∗
ni =

∑
i

â†i (U
†)in (2.22)

can be obtained. Lastly, we aim to show that the transformation matrix is indeed unitary. For
this, consider:

δj,k = ⟨ϕj |ϕk⟩ =
∑
i

⟨ϕj |φi⟩ ⟨φi|ϕk⟩ =
∑
i

⟨φi|ϕj⟩∗ ⟨φi|ψk⟩ (2.23)

=
∑
i

U∗
ijUik =

∑
i

(U †)jiUik = (U †U)jk ⇒ U †U = 1 (2.24)

Any hermitian matrix A, such as our Hamiltonians Ĥ0 and Ĥ1, can then be diagonalized by the
unitary similarity transformation:

U †AU =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 (2.25)

where λ1, . . . λn are the eigenvectors of the hermitian matrix A and the columns of U are spanned
by the eigenvectors of the hermitian matrix A.

Ĥ0 =

L∑
i=1

E
(0)
i â†i âi = E

(0)
i n̂i (2.26)
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Chapter 2. Floquet system in one-dimension § 1. Correlation function

where n̂i denotes the fermionic occupation number operator at site i. In the case of periodic
boundary conditions, we recover the unitary transformation to the momentum basis, discussed
in section 1.1.2 [27].

Correlation function ground state

Once the diagonalizing unitary transformation 2.25 for Ĥ0 has been found, the ground state |G⟩
for the half-filled fermion chain is:

|ψ(0)⟩ = |G⟩ =
L/2∏
i=1

â†i |0⟩ (2.27)

Consequently, the resulting two-point (one-particle) correlation function is given by:

⟨G|ĉ†mĉn|G⟩ =
∑
i∈occ

Uni(U
†)im (2.28)

as can readily be verified by inserting the transformations 2.22 and using the fermionic anti-
commutation rules.

2.1.2 Single quench

Next, we aim to find the equal-time two-point correlation function for a single quench:

Cm,n = ⟨ψ(t)|ĉ†mĉn|ψ(t)⟩ (2.29)

where |ψ(t)⟩ here corresponds to the time evolved ground state |G⟩ by Ĥ1. Since ĤSSD is
time-independent, the time evolution of a state in the Schrödinger picture is given by applying
the unitary evolution operator Û = exp

(
iĤ1t

)
on the ground state |ψ(t = 0)⟩ = |G⟩:

|ψ(t)⟩ = exp
(
−iĤ1t

)
|G⟩ (2.30)

Instead of working in the Schrödinger picture, we will work in the Heisenberg picture and consider
time-independent states:

⟨ψ(t)|ĉ†mĉn|ψ(t)⟩ = ⟨G|eiĤ1tĉ†mĉne
−iĤ1t|G⟩ = ⟨G|eiĤ1tĉ†me

−iĤ1teiĤ1tĉne
−iĤ1t|G⟩ (2.31)

Where in the second equality we inserted the expression Û †Û = exp
(
iĤ1t

)
exp
(
−iĤ1t

)
= 1.

Our goal will be to simply the two expressions:

⟨G| eiĤ1tĉ†me
−iĤ1t and eiĤ1tĉne

−iĤ1t |G⟩ (2.32)

such that the two-point correlation function 2.31 for a single-quench only depends on the unitary
transformation that diagonalizes the Hamiltonians Ĥ0 and Ĥ1.

We have previously established that the unitary transformation U diagonalizes Ĥ0. Similarly,
another unitary transformation V can be introduced which diagonalizes the sine-squared Hamil-
tonian Ĥ1 and results in the following basis change for our operators [27]:

b̂j =
∑
i

(V †)jiĉi and b̂†j =
∑
i

(V †)∗jiĉ
†
i =

∑
i

ĉ†iVij (2.33)
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such that:
Ĥ1 =

∑
i

E
(1)
i b̂†i b̂i (2.34)

and:
ĉn =

∑
j

Vnj b̂j and ĉ†n =
∑
j

(V †)∗nj b̂
†
j =

∑
j

b̂j(V
†)jn (2.35)

The operators b̂j and b̂†j can analogously be written in terms of our creation and annihilation
operators âi and â†i :

b̂j =
∑
i

(V †)jiĉi =
∑
i

(V †)ji
∑
k

Uikâk =
∑
k

(V †U)jkâk (2.36)

b̂†j =
∑
i

ĉ†iVij =
∑
i

∑
k

â†k(U
†)kiVij =

∑
k

âk(U
†V )kj (2.37)

If we define another Matrix as W = V †U such that W † = U †V , we obtain the expression:

b̂j =
∑
k

Wjkâk and b̂†j =
∑
k

â†k(W
†)kj (2.38)

It follows that:

eiĤ1tĉne
−iĤ1t |G⟩ = eiĤ1t

∑
j

Vnj b̂je
−iĤ1t |G⟩ (2.39)

Using the fact that eiĤ1tb̂je
−iĤ1t = e−iE

(1)
j tb̂j and using the expression b̂j from 2.38, we get:∑

j

Vnje
iĤ1tb̂je

−iĤ1t =
∑
j

Vnje
−iE(1)

j tb̂j =
∑
j

Vnje
−iE(1)

j t
∑
j

Wjkâk =
∑
j

Vnj
∑
k

W
(t),1
jk âk

(2.40)

where we additionally defined:
W

(t),1
jk = e−iE

(1)
j Wjk (2.41)

meaning we have:
eiĤ1tĉne

−iĤ1t |G⟩ =
∑
k

[V ·W (t),1]nkâk (2.42)

Analogously we can show that:

⟨G| eiĤ1tĉ†me
−iĤ1t =

∑
k′

⟨G| â†k′ [V ·W (t),1]†k′,m (2.43)

We note that this is simply the complex conjugate expression of 2.42. Consequently, for the
two-point correlation function we obtain:

⟨G|eiĤ1tĉ†me
−iĤ1te−iĤ1tĉne

−iĤ1t|G⟩ = ⟨G|
∑
k′

â†k′ [V ·W (t),1]†k′,m

∑
k

[V ·W (t),1]nkâk|G⟩

=
∑
k∈occ

[V ·W (t),1]nk · [V ·W (t),1]†km

(2.44)

where in the second step, we used that the correlation matrix vanishes if k′ ≠ k and ⟨G|â†kâk|G⟩ =
1 for all occupied k’s in the ground state [27].
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2.1.3 Double quench

Moving on one step, we wish to obtain the correlation matrix for a double quench (full cycle)
T = T0 + T1:

Cm,n = ⟨ψ(T )|ĉ†mĉn|ψ(T )⟩ (2.45)

meaning we consider the state:

|ψ(T )⟩ = e−iĤ0T0e−iĤ1T1 |G⟩ (2.46)

We have to evaluate:

eiĤ1T1eiĤ0T0 ĉne
−iĤ0T0e−iĤ1T1 |G⟩ =

∑
i

Unie
−iϵ0i T0

∑
j

(W †)ije
−iϵ1jT1

∑
k

Wjkâk |G⟩ (2.47)

We define
W

(T0),0
ik = e−iϵ

0
i T0(W )†ik (2.48)

which yields:

eiĤ1T1eiĤ0T0 ĉne
−iĤ0T0e−iĤ1T1 |G⟩ =

∑
k∈occ

[
U ·W (T0),0 ·W (T1),1

]
nk
âk |G⟩ (2.49)

For which we obtain the following correlation function:

⟨ψ(T )|ĉ†mĉn|ψ(T )⟩ =
∑
k∈occ

[
U ·W (T0),0 ·W (T1),1

]
nk

·
[
U ·W (T0),0 ·W (T1),1

]†
km

(2.50)

2.1.4 Generalization to n-cycles

The generalization to n-cycles, can essentially be seen as a product of double quenches. The
wave-function after n-cycles with nT = n(T0 + T1) is given by:

|ψ(nT )⟩ = e−iĤ0T0e−iĤ1T1 . . . e−iĤ0.T0e−iĤ1T1 |G⟩ (2.51)

and it can straightforwardly be obtained that the resulting correlation function is a product of
the unitary transformation matrices:

Cm,n = ⟨ψ(nT )|ĉ†mĉn|ψ(nT )⟩ =
∑
k∈occ

Wnk · (W†)km (2.52)

with
W = U · [W (T0),0 ·W (T1),1]n = U · [W (T0),0 ·W (T1),1] . . . [W (T0),0 ·W (T1),1] (2.53)

and therefore implicitly depends on the how many states k in the lattice are occupied [27].

2.2 Conformal field theory

As previously mentioned, the dynamics of the Floquet protocol 2.1 can analytically be solved
with conformal field theory. It therefore seems appropriate to introduce some of the concepts
found in a conformal field theory, starting with what conformality implies.
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Letting gµν denote the metric tensor in a space-time of dimension d, the conformal group
which describes conformal transformations are a subset of invertible mappings (coordinate
transformation) xµ → x̃µ(x) that leave the metric invariant up to a scale change Ω(x):

gµν(x) → gµν(x̃) = Ω(x)gµν(x) = gρσ
∂x̃ρ

∂xµ
∂x̃σ

∂xν
(2.54)

and consequently preserve angles between two arbitrary vectors v and w. The set of conformal
transformation form the so-called conformal group [7]. In two-dimensions, an action of the
conformal group can be regarded as two independent actions on z and z̄. In general, the
transformed metric is of course not proportional to the original metric. To study when it is, we
consider an infinitesimal transformation xµ → x̃ρ = xρ + ϵρ(x⃗) +O(ϵ2). Then:

∂x̃ρ

∂xµ
= δρµ + ∂µϵ

ρ and
∂x̃σ

∂xν
= δσν + ∂νϵ

ρ. (2.55)

Given this we obtain the following equation:

Ω(x)gµν = gρσ
∂x̃ρ

∂xµ
∂x̃σ

∂xν
+O(ϵ2) (2.56)

= gρσ(δ
ρ
µδ
σ
ν + δρµ∂νϵ

σ + ∂µϵ
ρδσν ) +O(ϵ2) (2.57)

= gµν + δνϵµ + ∂µϵν (2.58)

To now satisfy the requirement of a conformal transformation 2.54, i.e scale invariance, we have
to fulfill the condition:

∂µϵν + ∂νϵµ = f(x⃗)gµν (2.59)

where the resulting factor f(x⃗) = 2
d∂ρϵρ is determined by taking the trace on both sides with gµν :

gµν(∂νϵµ + ∂µϵν) = f(x)gµνg
µν ⇒ 2(∂νϵ

ν) = d · f(x) (2.60)

and d is the dimension of the metric tensor. To conclude we therefore obtain the following scale
change:

Ω(x) = 1 +
2

d
∂νϵν (2.61)

and the resulting equation is

∂νϵµ + ∂µϵν =
2

d
(∂ · ϵ)gµν (2.62)

For d = 1, any ϵ satisfies this equation. For our considerations, mainly the case d = 2 will be
relevant [22, 4].

2.3 Conformal group in two-dimensions

To simply things, we will mainly be working in Euclidean space, where the metric is defined to
be gµν = δµν . In two dimensions the so-called conformal Killing equation 2.62 reduces to:

∂ϵ0
∂x0

= − ∂ϵ0
∂x1

and
∂ϵ0
∂x0

=
∂ϵ1
∂x1

(2.63)

Identifying ϵ0 with the real part of a complex function and ϵ1 the imaginary part, we notice that
we recovered the Cauchy-Riemann equations for holomorphic functions and anti-holormorphic
functions. It therefore makes sense to work with complex coordinates z and z̄:

z = x0 + ix1 and z̄ = x0 − ix1 (2.64)
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where
x0 =

1

2
(z + z̄), x1 =

1

2i
(z − z̄), ∂z =

1

2
(∂0 − ∂1). ∂z̄ =

1

2
(∂0 + i∂1) (2.65)

for which we obtain ϵ(z) = ϵ0 + iϵ1 and ϵ̄(z̄) = ϵ1 − iϵ2. Since naturally two independent algebras
arise when considering the algebra of the conformal transformation generators, we can regard z
and z̄ as independent coordinates [22]. This corresponds to the original coordinates (x1, x2) ∈ R2

to be taken as (x1, x2) ∈ C2 and then transforming them to z, z̄ respectively. It should therefore
be emphasized that z̄ is a distinct complex coordinate and not simply the complex conjugate of
z. At some point z̄ is then however to be identified with the complex conjugate z∗ of z again. It
follows that going to complex variables, the equation 2.63 further reduces to:

∂zϵ(z, z̄) = 0 and ∂z ϵ̄(z, z̄) = 0 (2.66)

and analogously for the derivative with respect to z̄. The general solution is that ϵ is an
arbitrary function of z and does not depend on z̄ and ϵ̄ is an arbitrary function of z̄, meaning a
two-dimensional conformal transformation coincides with the analytic coordinate transformations:

z → f(z), z̄ → f̄(z̄) (2.67)

where f(z) is an arbitrary function of z. Expressed alternatively, a holomorphic function
f(z) = z + ϵ(z) gives rise to an infinitesimal two-dimensional conformal transformation z 7→ f(z).
[4][22]

2.3.1 Fields

Fields only depending on z, i.e ϕ(z) are called chiral fields and fields ϕ(z̄) only depending on
z̄ are called anti-chiral fields. It is also common to refer to them as holomorphic and anti-
holomorphic, respectively. The conformal dimensions (h, h̄)2 are obtained from ϕ(z, z̄) with the
scaling transformation z → λz:

ϕ(z, z̄) 7→ ϕ̃(z, z̄) = λhλ̄h̄ϕ(λz, λ̄z̄) (2.68)

If a field, under conformal transformation z → f(z), changes such that:

ϕ(z, z̄) → ϕ̃(z, z̄) =

(
∂f

∂z

)h(∂f̄
∂z̄

)h̄
ϕ(f(z), f̄(z̄)) (2.69)

it is referred to as a primary field of conformal dimension (h, h̄). This is equivalent to the
statement that ϕ(z, z̄)dzhdz̄h̄ is invariant. If this statement only holds for f ∈ SL(2,C)/Z2, i.e
only for global conformal transformations3, then ϕ is called a quasi-primary field [2].

2.4 Floquet conformal field theory

In this section we will briefly give an overview of some of the results found in the Floquet
Conformal Theory [27][13][1] which will give us a theoretical analytically solvable method for
obtaining many of the quantities we wish to consider. To describe the Floquet system with the

2the bar here does not mean complex conjugation. Both numbers are real. It simply serves simply to distinguish
the two quantities

3A section on the Witt algebra and global versus local transformation, can be found in the Appendix
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help of conformal field theory, it is convenient to instead work with the energy-momentum tensor.
In such framework, our Floquet system can be described by:

Ĥ(t) =


ĤSSD =

∫ L

0
dxT00(x) 0 < t < T1

Ĥ0 = 2

∫ L

0
dx sin2

(πx
L

)
T00(x) T1 < t < T1 + T0

(2.70)

Let |ψ(nT )⟩ be the stroboscopic time evolved Floquet state after n cycles. Most of the quantities
we aim to study can be obtained by evaluating the two-point correlation function G(x2, T, x2, 0) =
⟨ψ(nT )|O1(x1)O2(x2)|ψ(nT )⟩ of two local operators O(x1) and O2(x2). Introducing Euclidean
coordinates ω = τ + ix and imaginary time, the two local operators we wish to consider are the
fields ϕ(ω1, ω̄1) and ϕ(ω0, ω̄0). For a 1-cycle drive, the resulting two-point correlation function is
then given by:

G(x, τ, x0, 0) =
〈
eτ1ĤSSDeτ0Ĥ0ϕ(ω1, ω̄1)e

−τ0Ĥ0e−τ1ĤSSDϕ(ω0, ω̄0)
〉

(2.71)

where we have and τ = τ0 + τ1. Next we map to the complex plane with the conformal mapping
z = exp(2πω/L). Since we assumed that ϕ is a primary field, according to equation 2.69 we
expect the two-point function to transform as follows:

G(x, τ ;x0, 0) =

(
∂z1
∂ω1

)h( ∂z̄1
∂ω̄1

)h̄ 〈
eτ1ĤSSDeτ0Ĥ0ϕ(z1, z̄1)e

−τ0Ĥ0e−τ1ĤSSDϕ(z0, z̄0)
〉

(2.72)

where one can readily verify that:(
∂z1
∂ω1

)h( ∂z̄1
∂ω̄1

)h̄
=

(
2π

L

)4h

(2.73)

This is equivalent to evaluating the evolution of the operator O(nT ) = F−nO1(x1)O2(x2)F
n

and applying it to the ground state |ψ0⟩ of Ĥ0. Generally such operator evolution does not
have a closed form solution [13]. It turns out however, that for the Floquet drive with the SSD
Hamiltonian as a deformation, the time evolution of the operator product O1(x1)O2(x2) for a
one-cycle time translation is equivalent to a Möbius transformation 4 for each point in C:

z̃1 = f(z) =
az + b

cz + d
with a, b, c, d ∈ C, ad− bc ̸= 0 (2.74)

with the parameters:

a =
(
1 +

πτ1
L

)
exp
(πτ0
L

)
, b = −πτ1

L
exp
(
−πτ0
L

)
c =

πτ1
L

exp
(πτ0
L

)
, d =

(
1− πτ1

L

)
exp
(
−πτ0
L

)
where τ0 = iT0 and τ1 = iT1 represent the imaginary time periods. The two-point function at
different times for a 1-cycle drive is then more explicitly determined by:

〈
eτ1ĤSSDeτ0Ĥ0ϕ(ω1, ω̄1)e

−τĤ0e−τ1ĤSSDϕ(ω0, ω̄0)
〉
=

(
2π

L

)4h(∂z̃1
∂z1

)h(∂ ˜̄z1
∂z̄1

)h̄
⟨ϕ(z̃1, ˜̄z1)ϕ(z0, z̄0)⟩

(2.75)
4which is inherently conformal (angle preserving).
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and we obtain the following expression for the operator evolution:

F−1O(z, z̄)F 1 =

(
∂z1
∂z

)h(∂z̄1
∂z̄

)h̄
O(z1, z̄1) (2.76)

Obtaining the n-cycle Floquet time evolution, can be simply be seen as a the following composition
of the initial Möbius transformation:

z̃n = fn(z) =
Az +B

Cz +D
(2.77)

The two-point correlation function for stroboscopic times after n cycles is best obtained by
expanding the n-cycle Möbius transformation by writing the 1-cycle Möbius transformation in
its normal form, which centers around finding the fixed points f(γ) = γ. For a single-cycle, this
yields the following quadratic condition:

cγ2 − (a− d)γ − b = 0 (2.78)

which has at most two fixed points, with the exception of the identity mapping z 7→ f(z) = z.
Denoting the two fixed point of the Möbius transformation as γ1 and γ2, the above equation
gives us the two roots:

γ1 =
a− d−

√
(a− d)2 + 4bc

2c
, γ2 =

a− d+
√

(a− d)2 + 4bc

2c
(2.79)

To include the fact that we are considering n-cycles, we introduce the rotation η (also referred to
as multiplier) relative to the fixed points:

η =
cγ2 + d

cγ1 + d
=
a+ d+

√
(a− d)2 + 4bc

a+ d−
√

(a− d)2 + 4bc
(2.80)

The normal form for a one-cycle evolution simply amounts to finding the points z1 satisfying:

z̃1 − γ1
z̃1 − γ2

= η
z − γ1
z − γ2

(2.81)

and for n-cycles:
z̃n − γ1
z̃n − γ2

= ηn
z − γ1
z − γ2

(2.82)

This shows that the characteristics of the entire stroboscopic time evolution is encoded in the
multiplier η. We note that since a = d̄ (where here the hat does denote complex conjugation) the
first term a− d in the multiplier η in equation (2.80) is real. Without having explicitly found
the form of the correlation function, the stroboscopic time evolution can already be classified,
according to the sign of term inside the square root of η [1]:

∆ =
1

4
(a− d)2 + bc (2.83)

i. Elliptical Class: In this case the equation f(γ) = γ has two distinct roots which are
conjugate to each other γ1 = γ∗2 and the rotation parameter η is a pure phase |η| = 1, i.e
η ∈ C which corresponds to an imaginary ∆ < 0. The system is periodic, corresponding to
the non-heating phase.

ii. Hyperbolic Class: The two distinct roots γ1 and γ2 are real. This corresponds to ∆ > 0
since then the square root is also real and consequently η ̸= 1 and η ∈ R. This corresponds
to the heating phase.
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iii. Parabolic Class: The two roots coincide with each other γ = γ1 = γ2 due to vanishing
discriminant ∆ = 0. The transformation, which sends the fixed point γ to infinity is given
by:

g(z) =
1

z − γ
(2.84)

If γ = ∞ is the sole fixed point, then the transformation gfg−1 fixes infinity which has to
imply that f(z) is a translation, i.e f(z) = z + b. This corresponds to the critical phase.

Using an analytic continuation τ → it and inserting the explicit expression for our parameters,
∆ is given by:

∆ =

(
π2T 2

1

L2
− 1

)
sin2

(
πT0
L

)
− πT1

L
sin2

(
2πT0
L

)
(2.85)

and is clearly periodic in T0. The n cycle Möbius transformation can then explicitly be written
in terms of the parameters:

A = γ1 − ηnγ2, B = (ηn − 1)γ1γ2 (2.86)
C = 1− ηn, D = γ1η

n − γ2 (2.87)

2.4.1 Conformal transformations of the Energy-Momentum Tensor

In general, the energy-momentum tensor is not a primary field since it has a non-vanishing
central charge c [7]. Under a conformal transformation z → f(z) the energy-momentum tensor
therefore transforms slightly different than a primary field:

T̃ (z) =

(
∂f

∂z

)2

T (f(z)) +
c

12
S(f(z), z) (2.88)

where S(f(z), z) denotes the Schwarzian derivative:

S(f, z) =
1

(∂zf)2

(
(∂zf)(∂

3
zf)−

3

2
(∂2zf)

2

)
(2.89)

The Schwarzian derivate can be thought of as a tool to measure to what extent a transformation
corresponds to a Möbius transformation. We note that we only obtain a Schwarzian derivative
if we transform between different geometries, not however, if we transform between Möbius
transformations. The first step is to map the strip to the complex plane using the exponential
mapping z = exp(2πω/L):

⟨G|F−nT (ω)Fn|G⟩ =
(
∂z

∂w

)2

⟨G|F−nT (z)Fn|G⟩ −
(
2π

L

)2 c

24
(2.90)

Now, we map the complex plane to itself, resulting in the driven möbius coordinates z̃n. After
n-cycle driving, the expectation value of the energy-momentum tensor on the strip therefore
becomes:

⟨G|F̂−nT (ω)F̂n|G⟩ =
(
∂z

∂w

)2(∂z̃n
∂z

)
⟨G|T (z̃n)|G⟩ −

(
2π

L

)2 c

24
(2.91)

Lastly, we need to evaluate the expectation value of the energy-momentum tensor ⟨G|T (z̃n)|G⟩.
This is done by performing another conformal transformation to the upper half-plane with
ξ =

√
z = exp(πω/L). Since this is not a Möbius transformation this generates a Schwarzian

derivative:
c

12
S(ξ, z) =

c

12

(
ξ′′′(z)

ξ′(z)
− 3

2

(
ξ′′(z)

ξ′(z)

)2
)

=
c

32z2
(2.92)
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meaning we have:

⟨G|F̂−nT (ω)F̂n|G⟩ =
(
∂z

∂w

)2(∂z̃n
∂z

)[
⟨G|T (ξ)|G⟩+ c

32zn2

]
−
(
2π

L

)2 c

24
(2.93)

It turns out that ⟨G|T (ξ)|G⟩ is translationally invariant in the horizontal direction and therefore
vanishes. Subtracting the initial term obtained from the Schwarzian derivative, we get:

⟨G|F−nT (ω)Fn|G⟩ =
(
∂z

∂w

)2(∂z̃n
∂z

)2 c

32z̃2n
(2.94)

and the energy density is given by:

E(x, t) = ⟨T (x, nT )⟩+
〈
T̄ (x, nT )

〉
=

c

32

[(
∂z

∂w

)2(∂z̃n
∂z

)
1

z̃2n
+

(
∂z̄

∂ω̄

)2(∂ ¯̃zn
∂z̄

)
1
¯̃z2n

]
(2.95)

After an analytic continuation τ0 → iT0, τ1 → iT1, the expectation value of T and T̄ can be
expressed in terms of the Möbius parameters 2.77:

⟨T (x, t = nT )⟩ =
(
2π

L

)2 c

32

(AD −BC)2z2

(Az +B)2(Cz +D)2〈
T̄ (x, t = nT )

〉
=

(
2π

L

)2 c

32

(AD −BC)2z̄2

(Az̄ +B)2(Cz̄ +D)2

(2.96)

The total energy is then constructed as follows:

E(t = nT ) =
1

2π

∫ L

0
dx (⟨T ⟩+

〈
T̄
〉
) =

2π

L

c

16

AD +BC

AD −BC
(2.97)

As expected, total energy and energy density expect therefore implicitly depend on the parameters
T0/L and T1/L and n [13].

2.5 Evolution of energy and energy density

Equipped with the knowledge of Floquet CFT, we turn to our lattice model again. The aim of
this section will be to study the evolution of the total energy E and energy density E . Obtaining
the total energy corresponds to forming the expectation value with the time-evolved state |ψ(nT )⟩
and can be written in terms of the previously obtained correlation function (2.52) as follows:

E(nT ) = ⟨Ĥ0⟩ = ⟨ψ(nT )|Ĥ0|ψ(nT )⟩ =
L−1∑
i=1

Ci,i+1 + Ci+1,i (2.98)

In the preceding section, we established, that the total energy implicitly depends on the driving
parameters T0/L and T1/L. Our goal will be to analyze exactly how the driving parameters
influence the total energy of our system. The result for T0/L = [0, 2] and T1/L = [0, 2] can be
seen in Fig. 2.3. As expected from Floquet conformal field theory, we observe the formation of
two phases; heating in the low-frequency driving regime and non-heating in the high-frequency
driving regime, corresponding to the hyperbolic and elliptical class of Möbius transformations
respectively. We also note, that the phase diagram is periodic in T0/L and aperiodic in T1/L5.

5This is expected, since ∆ from 2.85 is periodic in T0 and aperiodic in T1
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Furthermore, we observe in Fig. 2.5, that the energy in the heating phase exponentially grows as
the number of cycles n is increased and periodically varies in the non-heating phase6. It should
be noted that the parameters chosen for the heating phase in Fig. 2.5 correspond to a slowly
heating system, since the exponential increase only holds in the low-energy limit. Inevitably, as
the cycles increase, the total energy starts to plateau [3].

0 0.5 1 1.5 2.0
T0/L

0

0.5

1

1.5

2.0

T
1
/L

0

1

2

3

4

5

6

Figure 2.3: The Total Energy for a 6-cycle Floquet driven one-dimensional system of L = 100
sites as a function of the the two different driving periods T0 and T1.

For a quickly heating system in the low-frequency, long-time regime (for example, T0/L = 0.5
and T1/L = 1.5) the total energy quickly converges to its maximum energy value. This is to be
expected, as the Hilbert space is finite dimensional (meaning only a finite number of eigenstates
and finite energies Em exist). We can see this limitation analytically by considering that in a
finite system, the time-evolved Floquet state can be expanded in terms of energy-eigenfunctions
|um⟩ as follows; |ψ(nT )⟩ = ∑

m cm(nT ) |um⟩. For the total energy after n-cycles we therefore
have:

E(nT ) = ⟨ψ(nT )|Ĥ0|ψ(nT )⟩
=
∑
m,m′

cm(nT )cm′(nT ) ⟨um′ |Ĥ0|um⟩ (2.99)

6The phase for the non-heating case is dependent on the parameters T0 and T1
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Figure 2.4: Energy density for a heating phase (a) T0 = 0.95L, T1 = 0.05L and non heating phase
(b) T0 = 0.2L, T1 = 0.8L. The CFT-predicated locations for the chiral peak and anti-chiral peak
in the heating phase are xchiral = 276 and xanti-chiral = 724.

Using the eigenvalue equation Ĥ0 |um⟩ = Em |um⟩, we get

E(nT ) =
∑
m,m′

cm(t)cm′(t)Emδm,m′

=
∑
m

|cm(t)|2Em with
∑
m

|cm(t)|2 = 1
(2.100)

In this picture, the infinite temperature state therefore simply corresponds to the saturated
maximal energy state.

To better understand in what manner the heating occurs, we wish to analyze the energy density,
which can be regarded as the local component of the total energy 2.98 and is therefore given by:

E(i, n) = Ci,i+1 + Ci+1,i (2.101)

The energy density for the heating phase and non-heating phase in an early-time regime are
shown in Fig. 2.4a and 2.4b, respectively. We observe, that in the heating phase, most of
the energy accumulates around two peaks, whereas in the non-heating phase the energy keeps
oscillating in a patternless manner as the number of cycles increases. As established in section
2.4, the Floquet dynamics boils down to classifying conformal mappings according to their fixed
points γ1 and γ2 or the sign inside the square root of the multiplier η. The location of the
energy peaks can then be determined with the unstable fixed point of the Möbius transformation:
xchiral = L log(γ2)/2π and xanti-chiral = L− L log(γ2)/2π [27]. We find, that the anti-chiral and
chiral peaks calculated in the Floquet CFT framework are consistent with the accumulation
points found in our lattice model.

For a late-time regime corresponding to cycles roughly larger than n = 18, however, the CFT
predictions are not accurate anymore, since more and more excitations other than the chiral
and anti-chiral appear. In Fig. B.2, for example, the energy density for a heating phase in
the late-time regime can be seen. As expected, we observe smeared out, saturated chiral and
anti-chiral peaks7 and emerging excitations near the center of the system [3].

7This is due to the fact that there are only a finite number of degrees of freedom.
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Figure 2.5: Evolution of total energy E(n) of a (left) heating phase (right) non-heating phase
with respect to the number of cycles n. In the heating-phase, we observe that the lattice results
deviate from the CFT predictions at around n = 18. In contrast, even in the long-time limit, the
non-heating phase can still correctly be described with CFT.

2.6 Entanglement entropy

To further characterize the Floquet dynamics a study of the entanglement entropy is conducted.
To this end, the entire composite bipartite quantum system H = HA ⊗HB is first split up into
two subsystems A and B. Here we assume that we have the best possible knowledge obtainable
by the system, such that we can describe the composite state by the pure state |Ψ⟩ ∈ H. Even
for a pure state the perfect knowledge of the composite system however does not guarantee that
the individual parts also are described by pure states. Only in the case where |Ψ⟩ is a product
state, i.e |Ψ⟩ = |ϕ⟩ ⊗ |ψ⟩ for any two states |ϕ⟩ ∈ HA and |ψ⟩ ∈ HB. In this case the reduced
density matrices are given by:

ρA = |ϕ⟩ ⟨ϕ| and ρB = |ψ⟩ ⟨ψ| (2.102)

If |Ψ⟩ however cannot be written as a product state, the reduced states are not pure and are
described by an ensemble E of mixed states. Since a system is usually not perfectly isolated (a
general trait of open systems such as the one considered in this thesis), it must be described by
an incoherent superposition of several pure states |Ψi⟩. The density operator for an ensemble
E(pi, |Ψi⟩)8 can be expressed as:

ρ =
∑
i

pi |Ψi⟩ ⟨Ψi| (2.103)

Any measurement of on one of the subsystems can then be fully characterized by the reduced
density matrices, which are obtained from the total density matrix ρ = |Ψ⟩ ⟨Ψ| (with |Ψ⟩ being a
pure state) by tracing out the degrees of freedom of their respective complementary subsystem.
The reduced density matrices are therefore given by

ρA = TrB(ρ) and ρB = TrA(ρ) (2.104)
8An ensemble yields the complete description of the system.
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where TrB and TrA indicate the partial trace. If |a1⟩ and |a2⟩ are two arbitrary vectors in HA of
system A and |b1⟩ and |b1⟩ any two vectors in space B the partial trace is defined as:

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⊗ |b2⟩) = |a1⟩ ⟨a2|Tr(|b1⟩ ⟨b1|) (2.105)

The entanglement entropy now describes the quantum entanglement of a composite quantum
system, such as H = HA ⊗HB. For such a bipartite system, the entanglement entropy can be
quantified with the help of the von Neumman Entropy:

SA = −Tr[ρA ln(ρA)] =
∑
i

−λi ln(λi) + (1− λi) ln(1− λi) (2.106)

where λi are the eigenvalues of the reduced density operator ρA obtained via the eigendecomposi-
tion of the reduced density matrix

ρA =
∑
i

λi |i⟩ ⟨i| (2.107)

Since the spectrum of the two reduced density matrices ρA and ρB are identical the following
holds:

SA = −Tr[(ρA ln(ρA))] = −Tr[(ρB ln(ρB)] = SB (2.108)

for any pure composite state ρA = |Ψ⟩ ⟨Ψ|AB and bipartition of the two subsystems. This is the
reason, often entanglement entropy is simply denoted as entropy S without explicitly referring
to one of the subsystems.It should therefore be evident, that the entanglement entropy is not
proportional to the size of a subsystem but rather describes a measure of mutual connection
between the two subsystems. This can be observed in Fig. 2.7a. If the entanglement cut is
x = L, the total entanglement entropy S vanishes, since SA = SB.

If we have M non-zero eigenvalues λn in the eigendecomposition, which all take on the value
λn = 1/M for n = 1, . . .M , the entropy reaches its maximum value of SA = ln(M). In the case
of a product state, the entropy vanishes [18, 15]

2.6.1 Reduced density matrix from the correlation function

The reduced density matrices for a tight-binding system, can directly be computed with the help of
the two-point correlation functions [19][17] Considering, any arbitrary free-fermion Hamiltonian:

Ĥ0 =
∑
i,j

tij(â
†
i âj + h.c) (2.109)

that describes hoppings from site i to site j and vice verse. The eigenstates of such a Hamiltonian
are known to be Slater determinants9. Denoting |ψ⟩ be one such eigenstate, then according to
Wick’s theorem, all higher order (i.e two-particle, three-particle) correlation functions factorize
into products of one particle functions. For example for the four-point (2 particle) correlation
function, we obtain:

⟨ψ|ĉ†nĉ†mĉk ĉl|ψ⟩ = ⟨ĉ†nĉl⟩ψ ⟨ĉ†mĉk⟩ψ − ⟨ĉ†nĉk⟩ψ ⟨ĉ†mĉl⟩ψ (2.110)

If we consider a subsystem A of M sites, we know that by definition, the reduced density matrix
will reproduce all expectation values for that subsystem. Let Ô be an Observable of subsystem A

9Since the wave-functions need to be antisymmetric under the exchange of a fermion
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and suppose we have the ensemble E = {pj , |ψj⟩} (Each pure state |ψj⟩ appears with probability
pj in the mixed state). The reduced density matrix

ρ =
∑
j

pj |ψj⟩ ⟨ψj | (2.111)

then allows for the evaluation of an arbitrary state (mixed or pure):

⟨Ô⟩ =
∑
j

pj ⟨Ô|ψj |Ô⟩ψj =
∑
j

pjTr(|ψj⟩ ⟨ψj | Ô) = Tr

∑
j

pj |ψj⟩ ⟨ψj | Ô

 = Tr(ρÔ) (2.112)

Similarly to 2.110, we therefore expect the expression ⟨ĉ†nĉ†mĉk ĉl⟩ = Tr(ρĉ†nĉ†mĉk ĉl) to also factorize
into single particle functions:

Ci,j = tr(ĉ†i ĉjρ) (2.113)

For this to be the case, the reduced density matrix ρ has to be a Gaussian state in which a
free-fermion Hamiltonoperator appears in the exponential:

ρa =
1

Z
exp
(
−Ĥa

)
with Ĥa =

∑
i

hij ĉ
†
i ĉj (2.114)

The constant Z, in reference to statistical physics, ensures the correct normalization tr(ρa) = 1.
Importantly, the canonical transformation which diagonalizes the correlation matrix coincides
with the transformation that diagonalizes the Hamiltonian 2.109, appearing in the exponential
of the reduced density matrix10. Since Ĥ1 is also a free particle operator, the reduced density
matrix after n-cycle driving, will still have to be of the exponential form:

ρα =
1

Z
e−Hα with Hα =

L∑
k=1

ϵk ĉ
†
k ĉk (2.115)

but with a time-evolved operator:

Hα(nT ) =
L∑
k

ϵk(nT )ĉ
†
k(t)ĉk (2.116)

The eigenvalues of the time-dependent operator ϵk(nT ) are then obtained from the correlation
matrix at time nT = n(T0 + T1)

11:

Ci,j = ⟨ψ(nT )|ĉ†i ĉj |ψ(nT )⟩ = ⟨G|F̂ (nT )†ĉ†i ĉjF̂ (nT )|G⟩ (2.117)

Therefore to compute the von-Neumann Entropy after n-cycles, we will simply make use of the
right hand side of the expression 2.106 and insert the eigenvalues obtained from diagonalizing
the two-point correlation function 2.117 [18, 19, 17].

2.6.2 Evolution of entanglement entropy

The aim of this section will be to study the stroboscopic evolution of the von-Neumann entropy
SA for the two different phases under Floquet driving.

10Evidently, they share the same eigenvalues and eigenvectors.
11This only holds if the total number of particles is conserved
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Chapter 2. Floquet system in one-dimension § 6. Entanglement entropy

In a non-heating phase, seen in Fig. 2.6b, we observe an oscillation of the entanglement entropy
similar to the total energy in the non-heating phase. In contrast, the heating phase in Fig. 2.6a,
shows a linear entanglement growth for early times and saturates, similarly to the total energy,
in the long-time limit. The reason for this is again that in a lattice model the degrees of freedoms
and the energy bandwidth are finite. According to Floquet CFT, the half-system entanglement
entropy and energy are related:

Eheating(n) ∝ exp(6SA(n)) (2.118)

The relation 2.118 is expected to hold in for large system sizes and in the early-time, low energy
limit. Interestingly, however, in our numerical simulations, seen in Fig. 2.7b, we were not able to
reproduce this relation, indicating a departure from the expected results.
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Figure 2.6: Entanglement Evolution of a system of length L = 500 as a function of the number of
cycles n for different subsystem sizes A for (a) a heating phase with parameters, T0 = T1 = 0.9L
(b) non-heating phase with parameters T0 = 0.01L and T1 = 0.04L.

In Floquet CFT it was shown [3] that the observed energy peaks in the heating phase and kinks in
the entanglement entropy coincide. To verify this prediction, we wish to study the entanglement
entropy density as a function of the driving cycle n. We fix the subsystem B = (x, L] and vary
the end point x ∈ (0, L) for system A = [0, x] . The results are shown in Fig. 2.7a. The points
where the entanglement entropy shows kinks are referred to as chiral and anti-chiral peaks and
seem to coincide with the energy peaks observed in Fig. 2.4a.

Notably, the entanglement entropy increases only past the initial background value if the
entanglement cut for the subsystem A = [0, x] with x ∈ [0, L] includes one of the energy peaks.
This is due to the fact that the entanglement entropy only grows in the area between the two
kinks while maintaining the initial background value everywhere else.
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Figure 2.7: (a) Evolution of entanglement entropy as a function of the entanglement cut x for
the subsystem A[0 : x]. The Floquet system parameters are T0 = 0.95L and T1 = 0.05L and we
have periodic boundary conditions (b) The entanglement entropy and log(E(n))/6 are plotted
as a function of the number of cycles to verify the correspondence 2.118
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3 | Floquet system in two dimensions

In one-dimension, we have observed that the Floquet time evolution leads to a formation of two
phases; heating and non-heating, depending on the driving parameters T0 and T1. We found that
the numerical results on the lattice model in large parts were consistent with the predictions of
Floquet conformal field theory. In this chapter, we wish to now analyze whether a similar phase
structure can also be observed in a two-dimensional Floquet system on a lattice. It should be
noted however that we will have to rely solely on numerics as there is no analytically solvable
model available for a Floquet system in two dimensions.

At t = 0, we again, prepare the initial state |ψ(t = 0)⟩ to be the ground state of the periodic-
tight-binding model1:

Ĥ0 =

Lx∑
i=1

Ly∑
j=1

(
− t1

[
ĉ†(i, j)ĉ(i+ 1, j) + ĉ†(i+ 1, j)ĉ(i, j)

]
− t2

[
ĉ†(i, j)ĉ(i, j + 1) + ĉ†(i, j + 1)ĉ(i, j)

] ) (3.1)

and then time evolve the ground state with the sine-squared deformed Hamiltonian for a duration
of time T1:

Ĥ1 =

Lx−1∑
i=1

Ly−1∑
j=1

(
− t1F

(
i+

1

2
, j

)[
ĉ†(i, j)ĉ(i+ 1, j) + ĉ†(i+ 1, j)ĉ(i, j)

]
− t2F

(
i, j +

1

2

)[
ĉ†(i, j)ĉ(i, j + 1) + ĉ†(i, j + 1)ĉ(i, j)

] ) (3.2)

where F(x, y) corresponds to the function 1.46. To complete a cycle, we then drive the state
with Ĥ0 for a time T0. In summary, the time-dependent Hamiltonian is given by:

Ĥ(t) =

{
SSD-Hamiltonian (3.1) 0 < t < T1

PBC-Hamiltonian (3.2) T1 < t < T1 + T0
(3.3)

where in both cases, we will for simplicity, set t1 = t2 = 1. Since nothing about the protocol
changes, the factorization of the Floquet operator 2.4 still holds. The only difference to the
one-dimensional case is the extra degree of freedom resulting from a two-dimensional basis state
being described by two indices rather than one, which leads to an ambiguity as to how the basis
states are supposed to be ordered (i.e does the state |1, 2⟩ come before |2, 1⟩ or the other way
around). For a square lattice, we have Lx = Ly and therefore require L2-basis states. In our
numerical implementations we will stick to natural ordering, meaning we order the basis states
(i, j) as such:

• Start at lattice location (0, 0), corresponding to the first element in the flattened vector
and assign it index k = 1

• Increment j to traverse the vertical y-direction.

• Once the end of the lattice has been reached, return to j = 0 and increment i by one. This
procedure is repeated such that the entire lattice has been indexed by k.

1We employ periodic boundary conditions both in x and y directions
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Chapter 3. Floquet system in two dimensions § 1. Total energy

Once the basis-ordering has been decided upon, we proceed in a similar fashion as in 1D, by first
obtaining the explicit matrix form for our Hamiltonians 3.1 and 3.2. The shape of the resulting
matrices are shown in Figure 3.1.
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Figure 3.1: Structure of the tight-binding Hamiltonian for Lx = Ly = 5 and (a) open-boundary
conditions (b) periodic-boundary conditions (c) sine-squared deformed.

The procedure to obtain the correlation function after n-cycles for the two-dimensional case,
follows analogously the procedure introduced in section 2.1. The only difference is the dimensions
of the matrices and the number of occupied modes. The correlation function after n-cycles is
still given by 2.52.

3.1 Total energy

The total energy for the two-dimensional lattice in terms of the two-point correlation function is
simply given by:

E(n) = ⟨Ĥ0⟩ = ⟨ψ(nT )|Ĥ0|ψ(nT )⟩ =
L−1∑
i=1

L−1∑
j=1

(
C[(i, j), (i+ 1, j)] + C[(i, j), (i, j + 1)]

+ C[(i+ 1, j), (i, j)] + C[(i, j + 1), (i, j)]
) (3.4)

Similarly, to the one-dimensional case, we wish to analyze the heating and non-heating phase
structure. The results obtained for a square lattice with Lx = Ly = 15 sites after 5-cycles, is
shown in Fig. 3.2. Due to the low resolution, we note, that the exact transition lines in the
phase structure, namely in the ranges shortly after a period are hard to make out2. However
a comparison with Fig. 2.3, still allows for the conclusion that the phase-structure period in
the two-dimensional case, is 1/4-th that of the one-dimensional one. Not surprisingly, we also
observe, that due to the larger degrees of freedom and the larger Hilbert space, the total energy
values are substantially larger than in the one-dimensional case.

In the next step, we wish to analyze the evolution of the total energy for the heating and
non-heating phase. The results for two examples of a heating and non-heating phase are shown
in Fig. 3.3. The heating phase is similar to the one-dimensional case where it shows a steep
increase in total energy for the first few cycles until the energy saturates at around E = 140 and
oscillates slightly around that value. A similar behavior for other heating phases can be observed
in Fig. B.1. In contrast to the one-dimensional case, we observe that the non-heating phase is

2This is suspected to be the case due to the small system size of only L = 15
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Figure 3.2: Phase diagram for a 5-cycle driven two-dimensional square lattice with Lx = Ly = 15
and periodic boundary conditions.

not periodic anymore but rather stays constrained within an energy window between E = 12.5
and E = 17.5, meaning that in the non-heating case, the system stays constrained in a very small
sector of the total Hilbert space and never returns to its initial ground state. The reason for
this is that, in one-dimension, the particles were restricted to moving left or right, meaning the
probability that the trajectory of all quasiparticle at time t returns them to their initial position,
is much more likely than in the two-dimensional case due to the higher degrees of freedom.
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Figure 3.3: Total energy evolution as a function of the cycles for a (left) heating phase and (right)
non-heating phase

In Fig. 3.4, we can furthermore see that by increasing T1, the system slowly transitions from a
non-heating phase to a heating phase where an ever-growing energy bandwidth can be observed.
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3.2 Energy density

Lastly, we will study the energy density of our Floquet system. This quantity can again be
expressed in terms of the two-point correlation function:

E(i, j, n) =C[(i, j), (i+ 1, j)] + C[(i, j), (i, j + 1)]

+ C[(i+ 1, j), (i, j)] + C[(i, j + 1), (i, j)]
(3.5)

In contrast to the one-dimensional case, however, in two-dimension a clear pattern characterizing
the heating and non-heating cannot be found. This becomes evident when looking at the results
obtained in Fig. 3.5 where no reoccurring pattern amongst all different highly-symmetric heating
phases emerges. This means that even though there seems to be a tendency for energy to
accumulate away from the centers of the system and more towards the boundary, no clear
notion of heating and non-heating sectors can be determined. It should also be noted that the
bandwidth of energy values, i.e the highest energy values and lowest energy value in the energy
density spectrum, is more narrow in two- than in one-dimension, meaning the heating occurs in
a more spatially uniform way compared to the case in one-dimension, where only the chiral and
anti-chiral peaks absorb the heat at early times.

For certain choices of parameters, however, the distinction between heating and non-heating
sectors can still become quite pronounced. Such an example is shown in Fig. 3.6, where a clear
circular heating sector can be found.
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Figure 3.5: Energy density for 10 cycles and a square Lattice with Lx = Ly = 50 for the
time parameters (a) T0 = T1 = 0.5L (b) T0 = 0.5L, T1 = 0.9L (c) T0 = 0.2L, T1 = 0.5L (d)
T0 = 0.2L, T1 = 0.2L
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4 | Conclusion

The bulk of this thesis included verifying the analytical predictions made by Floquet CFT by
simulating the dynamics of the Floquet system numerically on a lattice. Even though no solvable
framework for this case currently exists, we then conducted a study analyzing whether similar
predictions for the two-dimensional system can be made.

In one-dimension an emergence of a heating and non-heating phase was observed. In the non-
heating phase, the total energy and entanglement entropy were found to periodically oscillate
as a function of the number of cycles n. The characteristic feature of the heating phase was
the formation of two energy absorbing accumulation points, the chiral and anti-chiral peak,
which were found to share the entirety of the systems entanglement entropy. The total energy
(in the early-time driving regime) was additionally found to be exponentially increasing. All
of the above the obtained results seemed to match the predictions made by the Floquet CFT.
The only significant departure from the analytical predictions is the expected relation between
entanglement entropy and total energy of the system.

In the two-dimensional square lattice system, a similar phase structure as in one-dimension was
observed. A notable change, however is the decrease of the phase-structure periodicity from 1 to
1/4-th. We also observed that the periodicity of the total energy for the non-heating phase was
broken. Instead, the phase gets stuck in a narrow energy window and never returns to its initial
ground state energy.

We also found that the clear notion of chiral and anti-chiral energy accumulation points in
one-dimension, have no corresponding counterpart in two-dimensions. It turns out that the shape
and location of the heating sectors greatly vary for different heating phases. This can be reasoned
by arguing that a two-dimensional system has more degrees of freedom, leading to more varied
trajectories of the quasiparticles. The probability of quasiparticles accumulating at the same
lattice site is therefore a lot less likely than in one-dimension.

Further investigations of the two-dimensional system could include analyzing the evolution of
the entanglement entropy. Due to the natural ordering of the basis states, identifying the correct
corresponding state sub-sectors for the bipartition of the total system, may pose complications
in its implementation. The question then naturally arises, whether entanglement entropy and
total energy share a correspondence similar to the one obtained in one-dimension1. Finally, the
resulting dynamics of different initial states, such as a thermal one, could be studied.

1We do not refer to the Floquet CFT energy-entanglement prediction here
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A | Additional Information

A.1 Thermal initial state

Instead of considering the initial state of our Floquet system to be the pure ground state of Ĥ0

at temperature T = 0 with Fermi-Dirac distribution 1.6b, we can also consider a thermal state
at thermal equilibrium. To study the expectation value at finite temperatures, we resort to the
density matrix formalism. In the canonical ensemble (fixed N , V and T ), the probabilities of
the energy eigenstates |ψi⟩ are proportional to the Boltzmann factor pi ∝ exp(−βEi), where
kBT = 1/β. As such, the density matrix reads

ρ =
∑
i

e−βEi |ψi⟩ ⟨ψi| = e−βĤ0 (A.1)

The expectation value of an observable O is then given by:

⟨O⟩ = Tr[Oρ]
Tr(ρ)

=
1

Z

∑
i

e−βEi ⟨ψi|O|ψi⟩ (A.2)

where Z denotes the canonical partition function Z =
∑

i e
−βEi . It can be shown that the

two-point correlation function Cij = ⟨ĉiĉj⟩ for the initial state simply has to be modified as such:

Cij =
1

Tr(e−βĤ0)

∑
{nk}

⟨{nk}|ĉ†i ĉj |{nk}⟩ e−β
∑

k nkϵk (A.3)

=
1

Tr(e−βĤ0)

∑
k

U∗
kiUkj

∑
{nk}

⟨{nk}|ĉ†k ĉk|{nk}⟩ e−β
∑

k nkϵk (A.4)

=
∑
k

U∗
kiUkj ⟨nk⟩ (A.5)

where we used the unitary transformation U which diagonalizes Ĥ0 and 2.22. To obtain the
correlation function at later times, the same procedure can be applied. It should be noted that
in the CFT Calculations, the phase heating/non-heating phase structure will remain even if the
system is prepared in a thermal state [3].

A.2 Witt Algebra

To find the algebra of the generators we consider the infinitesimal conformal transformation

z → z̃ = z + ϵ(z), ϵ(z) =
∞∑

n=−∞
cn(−zn+1)

z̄ → z̄ + ϵ̄(z̄) = z̄, ϵ̄(z̄) =

∞∑
n=−∞

c̄n(−z̄n+1)

(A.6)

where the infinitesimal parameters ϵn and ϵ̄n are constant. The differential operators that generate
the infinitesimal transformations are

Ln = −zn+1∂z, L̄n = −z̄n+1∂z̄ (A.7)
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Appendix A. Additional Information § 2. Witt Algebra

These operators satisfy the following commutation relation

[Lm, Ln] = (m− n)Lm+n,
[
L̄m, L̄n

]
= (m− n)L̄m+n,

[
Lm, L̄n

]
= 0 (A.8)

These two algebras are independent of each since they Ln’s and L̄m’s commute with each other
meaning that the (local) conformal algebra is simply the direct sum of the two isomorphic
algebras A.⊕ Ā. Since these two are independent we therefore say z and z̄ are independent since
the action of the conformal group in two dimensions factorizes into independent actions on z
and z̄ and we are effectively considering C2 and C. The generator for an arbitrary conformal
transformation is thus ∑

n

cnLn + c̄nL̄n (A.9)

and generates conformal transformations of functions f(z, z̄) [22, 4]
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B | Additional Plots
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Figure B.1: Evolution of the total energy for different parameters T1/L of a heating phase.
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Figure B.3: Spatial probability distribution for the eigenfunctions (a) |φ2(x, y)|2 and (b)
|φ12(x, y)|2 fof the PBC tight-binding model and (c) |φ501(x, y)|2 and (d) |φ1600(x, y)|2 for
the SSD deformed model on a square lattice of size Lx = Ly = 50. The index in the subscript
denotes the energy level l.
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Appendix B. Additional Plots
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Figure B.4: Density profile ⟨n(x, y)⟩ =
∑

i(Ei<0) |φi(x, y)|2 of the groundstate for (a) open
boundary conditions, (b) sine squared deformed. As is the case in one-dimension, the sine-squared
deformation shows translational invariance in the bulk of the system while still maintaining some
boundary effects on the edges of the system.
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